王--尤准局域质量的近地平线极限

Po-Ning Chen
{"title":"王--尤准局域质量的近地平线极限","authors":"Po-Ning Chen","doi":"arxiv-2408.02917","DOIUrl":null,"url":null,"abstract":"In this article, we compute the limit of the Wang--Yau quasi-local mass on a\nfamily of surfaces approaching the apparent horizon (the near horizon limit).\nSuch limit is first considered in [1]. Recently, Pook-Kolb, Zhao, Andersson,\nKrishnan, and Yau investigated the near horizon limit of the Wang--Yau\nquasi-local mass in binary black hole mergers in [12] and conjectured that the\noptimal embeddings approach the isometric embedding of the horizon into $\\R^3$.\nMoreover, the quasi-local mass converges to the total mean curvature of the\nimage. The vanishing of the norm of the mean curvature vector implies special\nproperties for the Wang--Yau quasi-local energy and the optimal embedding\nequation. We utilize these features to prove the existence and uniqueness of\nthe optimal embedding and investigate the minimization of the Wang--Yau\nquasi-local energy. In particular, we prove the continuity of the quasi-local\nmass in the near horizon limit.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near horizon limit of the Wang--Yau quasi-local mass\",\"authors\":\"Po-Ning Chen\",\"doi\":\"arxiv-2408.02917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we compute the limit of the Wang--Yau quasi-local mass on a\\nfamily of surfaces approaching the apparent horizon (the near horizon limit).\\nSuch limit is first considered in [1]. Recently, Pook-Kolb, Zhao, Andersson,\\nKrishnan, and Yau investigated the near horizon limit of the Wang--Yau\\nquasi-local mass in binary black hole mergers in [12] and conjectured that the\\noptimal embeddings approach the isometric embedding of the horizon into $\\\\R^3$.\\nMoreover, the quasi-local mass converges to the total mean curvature of the\\nimage. The vanishing of the norm of the mean curvature vector implies special\\nproperties for the Wang--Yau quasi-local energy and the optimal embedding\\nequation. We utilize these features to prove the existence and uniqueness of\\nthe optimal embedding and investigate the minimization of the Wang--Yau\\nquasi-local energy. In particular, we prove the continuity of the quasi-local\\nmass in the near horizon limit.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们计算了在接近视视界的一系列表面上的王--尤准局域质量的极限(近视界极限)。最近,Pook-Kolb、Zhao、Andersson、Krishnan 和 Yau 在[12]中研究了双黑洞合并中王--尤准局域质量的近视界极限,并猜想最优嵌入接近于视界到 $\R^3$ 的等距嵌入。平均曲率向量的常模消失意味着王--尤准局部能量和最优嵌入方程的特殊性质。我们利用这些特性证明了最优嵌入的存在性和唯一性,并研究了王--尤准局域能的最小化。特别是,我们证明了近地平线极限的准局部质量的连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near horizon limit of the Wang--Yau quasi-local mass
In this article, we compute the limit of the Wang--Yau quasi-local mass on a family of surfaces approaching the apparent horizon (the near horizon limit). Such limit is first considered in [1]. Recently, Pook-Kolb, Zhao, Andersson, Krishnan, and Yau investigated the near horizon limit of the Wang--Yau quasi-local mass in binary black hole mergers in [12] and conjectured that the optimal embeddings approach the isometric embedding of the horizon into $\R^3$. Moreover, the quasi-local mass converges to the total mean curvature of the image. The vanishing of the norm of the mean curvature vector implies special properties for the Wang--Yau quasi-local energy and the optimal embedding equation. We utilize these features to prove the existence and uniqueness of the optimal embedding and investigate the minimization of the Wang--Yau quasi-local energy. In particular, we prove the continuity of the quasi-local mass in the near horizon limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信