爆炸的博特-切恩特征类

Xiaojun Wu, Song Yang, Xiangdong Yang
{"title":"爆炸的博特-切恩特征类","authors":"Xiaojun Wu, Song Yang, Xiangdong Yang","doi":"arxiv-2408.03210","DOIUrl":null,"url":null,"abstract":"We prove a blow-up formula for Bott-Chern characteristic classes of compact\ncomplex manifolds. To this end, we establish a version of Riemann-Roch without\ndenominators for the Bott-Chern characteristic classes. In particular, as an\napplication, we study the behaviour of the Bott-Chern characteristic classes of\nthe Iwasawa manifold under a blow-up transformation.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"161 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bott-Chern characteristic classes of blow-ups\",\"authors\":\"Xiaojun Wu, Song Yang, Xiangdong Yang\",\"doi\":\"arxiv-2408.03210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a blow-up formula for Bott-Chern characteristic classes of compact\\ncomplex manifolds. To this end, we establish a version of Riemann-Roch without\\ndenominators for the Bott-Chern characteristic classes. In particular, as an\\napplication, we study the behaviour of the Bott-Chern characteristic classes of\\nthe Iwasawa manifold under a blow-up transformation.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了紧凑复流形的 Bott-Chern 特征类的吹胀公式。为此,我们为 Bott-Chern 特征类建立了一个无分母的黎曼-罗赫版本。特别是,作为应用,我们研究了岩泽流形的 Bott-Chern 特征类在吹胀变换下的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bott-Chern characteristic classes of blow-ups
We prove a blow-up formula for Bott-Chern characteristic classes of compact complex manifolds. To this end, we establish a version of Riemann-Roch without denominators for the Bott-Chern characteristic classes. In particular, as an application, we study the behaviour of the Bott-Chern characteristic classes of the Iwasawa manifold under a blow-up transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信