{"title":"加权超曲面的三角变量","authors":"Taro Sano, Luca Tasin","doi":"arxiv-2408.03057","DOIUrl":null,"url":null,"abstract":"We give a lower bound for the delta invariant of the fundamental divisor of a\nquasi-smooth weighted hypersurface. As a consequence, we prove K-stability of a\nlarge class of quasi-smooth Fano hypersurfaces of index 1 and of all smooth\nFano weighted hypersurfaces of index 1 and 2. The proofs are based on the\nAbban--Zhuang method and on the study of linear systems on flags of weighted\nhypersurfaces.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delta invariants of weighted hypersurfaces\",\"authors\":\"Taro Sano, Luca Tasin\",\"doi\":\"arxiv-2408.03057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a lower bound for the delta invariant of the fundamental divisor of a\\nquasi-smooth weighted hypersurface. As a consequence, we prove K-stability of a\\nlarge class of quasi-smooth Fano hypersurfaces of index 1 and of all smooth\\nFano weighted hypersurfaces of index 1 and 2. The proofs are based on the\\nAbban--Zhuang method and on the study of linear systems on flags of weighted\\nhypersurfaces.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了准光滑加权超曲面基底除数的三角不变量下限。因此,我们证明了指数为 1 的一大类准光滑法诺超曲面以及指数为 1 和 2 的所有光滑法诺加权超曲面的 K 稳定性。证明基于阿班--庄方法和加权超曲面旗上线性系统的研究。
We give a lower bound for the delta invariant of the fundamental divisor of a
quasi-smooth weighted hypersurface. As a consequence, we prove K-stability of a
large class of quasi-smooth Fano hypersurfaces of index 1 and of all smooth
Fano weighted hypersurfaces of index 1 and 2. The proofs are based on the
Abban--Zhuang method and on the study of linear systems on flags of weighted
hypersurfaces.