$\mathbb{H}^{n+1}$ 的完全同构一超曲面

Felippe Guimarães, Fernando Manfio, Carlos E. Olmos
{"title":"$\\mathbb{H}^{n+1}$ 的完全同构一超曲面","authors":"Felippe Guimarães, Fernando Manfio, Carlos E. Olmos","doi":"arxiv-2408.03802","DOIUrl":null,"url":null,"abstract":"We study isometric immersions $f: M^n \\rightarrow \\mathbb{H}^{n+1}$ into\nhyperbolic space of dimension $n+1$ of a complete Riemannian manifold of\ndimension $n$ on which a compact connected group of intrinsic isometries acts\nwith principal orbits of codimension one. We provide a characterization if\neither $n \\geq 3$ and $M^n$ is compact, or $n \\geq 5$ and the connected\ncomponents of the set where the sectional curvature is constant and equal to\n$-1$ are bounded.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete cohomogeneity one hypersurfaces of $\\\\mathbb{H}^{n+1}$\",\"authors\":\"Felippe Guimarães, Fernando Manfio, Carlos E. Olmos\",\"doi\":\"arxiv-2408.03802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study isometric immersions $f: M^n \\\\rightarrow \\\\mathbb{H}^{n+1}$ into\\nhyperbolic space of dimension $n+1$ of a complete Riemannian manifold of\\ndimension $n$ on which a compact connected group of intrinsic isometries acts\\nwith principal orbits of codimension one. We provide a characterization if\\neither $n \\\\geq 3$ and $M^n$ is compact, or $n \\\\geq 5$ and the connected\\ncomponents of the set where the sectional curvature is constant and equal to\\n$-1$ are bounded.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究等距沉浸 $f:M^n \rightarrow \mathbb{H}^{n+1}$ 进入维数为 $n+1$ 的完整黎曼流形的双曲空间,在这个流形上有一个紧凑的连通的本征等距群,其主轨道的维数为一。如果要么 $n \geq 3$ 和 $M^n$ 是紧凑的,要么 $n \geq 5$ 和截面曲率恒定且等于$-1$ 的集合的连通成分是有界的,我们就提供了一个特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete cohomogeneity one hypersurfaces of $\mathbb{H}^{n+1}$
We study isometric immersions $f: M^n \rightarrow \mathbb{H}^{n+1}$ into hyperbolic space of dimension $n+1$ of a complete Riemannian manifold of dimension $n$ on which a compact connected group of intrinsic isometries acts with principal orbits of codimension one. We provide a characterization if either $n \geq 3$ and $M^n$ is compact, or $n \geq 5$ and the connected components of the set where the sectional curvature is constant and equal to $-1$ are bounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信