{"title":"总 Q 曲率、体积熵和多项式增长多谐函数 (II)","authors":"Mingxiang Li","doi":"arxiv-2408.03640","DOIUrl":null,"url":null,"abstract":"This is a continuation of our previous work (Advances in Mathematics 450\n(2024), Paper No. 109768). In this paper, we characterize complete metrics with\nfinite total Q-curvature as normal metrics for all dimensional cases. Secondly,\nwe introduce another volume entropy to provide geometric information regarding\ncomplete non-normal metrics with finite total Q-curvature. In particular, we\nshow that if the scalar curvature is bounded from below, the volume growth of\nsuch complete metrics is controlled.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The total Q-curvature, volume entropy and polynomial growth polyharmonic functions (II)\",\"authors\":\"Mingxiang Li\",\"doi\":\"arxiv-2408.03640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a continuation of our previous work (Advances in Mathematics 450\\n(2024), Paper No. 109768). In this paper, we characterize complete metrics with\\nfinite total Q-curvature as normal metrics for all dimensional cases. Secondly,\\nwe introduce another volume entropy to provide geometric information regarding\\ncomplete non-normal metrics with finite total Q-curvature. In particular, we\\nshow that if the scalar curvature is bounded from below, the volume growth of\\nsuch complete metrics is controlled.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The total Q-curvature, volume entropy and polynomial growth polyharmonic functions (II)
This is a continuation of our previous work (Advances in Mathematics 450
(2024), Paper No. 109768). In this paper, we characterize complete metrics with
finite total Q-curvature as normal metrics for all dimensional cases. Secondly,
we introduce another volume entropy to provide geometric information regarding
complete non-normal metrics with finite total Q-curvature. In particular, we
show that if the scalar curvature is bounded from below, the volume growth of
such complete metrics is controlled.