测地线、曲率和李群上的共轭点

Alice Le Brigant, Leandro Lichtenfelz, Stephen C. Preston
{"title":"测地线、曲率和李群上的共轭点","authors":"Alice Le Brigant, Leandro Lichtenfelz, Stephen C. Preston","doi":"arxiv-2408.03854","DOIUrl":null,"url":null,"abstract":"In a Lie group equipped with a left-invariant metric, we study the minimizing\nproperties of geodesics through the presence of conjugate points. We give\ncriteria for the existence of conjugate points along steady and nonsteady\ngeodesics, using different strategies in each case. We consider both general\nLie groups and quadratic Lie groups, where the metric in the Lie algebra\n$g(u,v)=\\langle u,\\Lambda v\\rangle$ is defined from a bi-invariant bilinear\nform and a symmetric positive definite operator $\\Lambda$. By way of\nillustration, we apply our criteria to $SO(n)$ equipped with a generalized\nversion of the rigid body metric, and to Lie groups arising from Cheeger's\ndeformation technique, which include Zeitlin's $SU(3)$ model of hydrodynamics\non the $2$-sphere. Along the way we obtain formulas for the Ricci curvatures in\nthese examples, showing that conjugate points occur even in the presence of\nsome negative curvature.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geodesics, curvature, and conjugate points on Lie groups\",\"authors\":\"Alice Le Brigant, Leandro Lichtenfelz, Stephen C. Preston\",\"doi\":\"arxiv-2408.03854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a Lie group equipped with a left-invariant metric, we study the minimizing\\nproperties of geodesics through the presence of conjugate points. We give\\ncriteria for the existence of conjugate points along steady and nonsteady\\ngeodesics, using different strategies in each case. We consider both general\\nLie groups and quadratic Lie groups, where the metric in the Lie algebra\\n$g(u,v)=\\\\langle u,\\\\Lambda v\\\\rangle$ is defined from a bi-invariant bilinear\\nform and a symmetric positive definite operator $\\\\Lambda$. By way of\\nillustration, we apply our criteria to $SO(n)$ equipped with a generalized\\nversion of the rigid body metric, and to Lie groups arising from Cheeger's\\ndeformation technique, which include Zeitlin's $SU(3)$ model of hydrodynamics\\non the $2$-sphere. Along the way we obtain formulas for the Ricci curvatures in\\nthese examples, showing that conjugate points occur even in the presence of\\nsome negative curvature.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在配有左不变度量的李群中,我们通过共轭点的存在研究了大地线的最小化特性。我们给出了沿稳定和非稳定大地线存在共轭点的标准,在每种情况下使用不同的策略。我们同时考虑了一般Lie群和二次Lie群,其中Lie代数$g(u,v)=\langle u,\Lambda v\rangle$ 中的度量是由双不变双线形和对称正定算子$\Lambda$定义的。为了说明这一点,我们将我们的标准应用于配有刚体度量广义版本的$SO(n)$,以及Cheeger变形技术产生的李群,其中包括Zeitlin的$SU(3)$ 2$球面上的流体力学模型。在研究过程中,我们获得了这些例子的里奇曲率公式,表明即使存在一些负曲率,共轭点也会出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geodesics, curvature, and conjugate points on Lie groups
In a Lie group equipped with a left-invariant metric, we study the minimizing properties of geodesics through the presence of conjugate points. We give criteria for the existence of conjugate points along steady and nonsteady geodesics, using different strategies in each case. We consider both general Lie groups and quadratic Lie groups, where the metric in the Lie algebra $g(u,v)=\langle u,\Lambda v\rangle$ is defined from a bi-invariant bilinear form and a symmetric positive definite operator $\Lambda$. By way of illustration, we apply our criteria to $SO(n)$ equipped with a generalized version of the rigid body metric, and to Lie groups arising from Cheeger's deformation technique, which include Zeitlin's $SU(3)$ model of hydrodynamics on the $2$-sphere. Along the way we obtain formulas for the Ricci curvatures in these examples, showing that conjugate points occur even in the presence of some negative curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信