{"title":"无穷一阶直观逻辑在[公式省略]上的完整公理化","authors":"Christian Espíndola","doi":"10.1016/j.apal.2024.103506","DOIUrl":null,"url":null,"abstract":"<div><p>Given a weakly compact cardinal <em>κ</em>, we give an axiomatization of intuitionistic first-order logic over <span><math><msub><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>κ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mi>κ</mi></mrow></msub></math></span> and prove it is sound and complete with respect to Kripke models. As a consequence we get the disjunction and existence properties for that logic. This generalizes the work of Nadel in <span><span>[8]</span></span> for intuitionistic logic over <span><math><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>ω</mi></mrow></msub></math></span>. When <em>κ</em> is a regular cardinal such that <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>κ</mi></mrow></msup><mo>=</mo><mi>κ</mi></math></span>, we deduce, by an easy modification of the proof, a complete axiomatization of intuitionistic first-order logic over <span><math><msub><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>κ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mi>κ</mi><mo>,</mo><mi>κ</mi></mrow></msub></math></span>, the language with disjunctions of at most <em>κ</em> formulas, conjunctions of less than <em>κ</em> formulas and quantification on less than <em>κ</em> many variables. In particular, this applies to any regular cardinal under the Generalized Continuum Hypothesis.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 1","pages":"Article 103506"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168007224001106/pdfft?md5=626864cf42f8a5ffcf1ac38e77dc8d40&pid=1-s2.0-S0168007224001106-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A complete axiomatization of infinitary first-order intuitionistic logic over Lκ+,κ\",\"authors\":\"Christian Espíndola\",\"doi\":\"10.1016/j.apal.2024.103506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a weakly compact cardinal <em>κ</em>, we give an axiomatization of intuitionistic first-order logic over <span><math><msub><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>κ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mi>κ</mi></mrow></msub></math></span> and prove it is sound and complete with respect to Kripke models. As a consequence we get the disjunction and existence properties for that logic. This generalizes the work of Nadel in <span><span>[8]</span></span> for intuitionistic logic over <span><math><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>ω</mi></mrow></msub></math></span>. When <em>κ</em> is a regular cardinal such that <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo><</mo><mi>κ</mi></mrow></msup><mo>=</mo><mi>κ</mi></math></span>, we deduce, by an easy modification of the proof, a complete axiomatization of intuitionistic first-order logic over <span><math><msub><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>κ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><mi>κ</mi><mo>,</mo><mi>κ</mi></mrow></msub></math></span>, the language with disjunctions of at most <em>κ</em> formulas, conjunctions of less than <em>κ</em> formulas and quantification on less than <em>κ</em> many variables. In particular, this applies to any regular cardinal under the Generalized Continuum Hypothesis.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 1\",\"pages\":\"Article 103506\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168007224001106/pdfft?md5=626864cf42f8a5ffcf1ac38e77dc8d40&pid=1-s2.0-S0168007224001106-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007224001106\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224001106","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
A complete axiomatization of infinitary first-order intuitionistic logic over Lκ+,κ
Given a weakly compact cardinal κ, we give an axiomatization of intuitionistic first-order logic over and prove it is sound and complete with respect to Kripke models. As a consequence we get the disjunction and existence properties for that logic. This generalizes the work of Nadel in [8] for intuitionistic logic over . When κ is a regular cardinal such that , we deduce, by an easy modification of the proof, a complete axiomatization of intuitionistic first-order logic over , the language with disjunctions of at most κ formulas, conjunctions of less than κ formulas and quantification on less than κ many variables. In particular, this applies to any regular cardinal under the Generalized Continuum Hypothesis.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.