{"title":"畸变抛物方程的规范最优控制的最佳执行器位置","authors":"Yuanhang Liu, Weijia Wu, Donghui Yang","doi":"10.1007/s10957-024-02498-z","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on investigating the optimal actuator location for achieving minimum norm controls in the context of approximate controllability for degenerate parabolic equations. We propose a formulation of the optimization problem that encompasses both the actuator location and its associated minimum norm control. Specifically, we transform the problem into a two-person zero-sum game problem, resulting in the development of four equivalent formulations. Finally, we establish the crucial result that the solution to the relaxed optimization problem serves as an optimal actuator location for the classical problem.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"160 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Actuator Location of the Norm Optimal Controls for Degenerate Parabolic Equations\",\"authors\":\"Yuanhang Liu, Weijia Wu, Donghui Yang\",\"doi\":\"10.1007/s10957-024-02498-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on investigating the optimal actuator location for achieving minimum norm controls in the context of approximate controllability for degenerate parabolic equations. We propose a formulation of the optimization problem that encompasses both the actuator location and its associated minimum norm control. Specifically, we transform the problem into a two-person zero-sum game problem, resulting in the development of four equivalent formulations. Finally, we establish the crucial result that the solution to the relaxed optimization problem serves as an optimal actuator location for the classical problem.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02498-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02498-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal Actuator Location of the Norm Optimal Controls for Degenerate Parabolic Equations
This paper focuses on investigating the optimal actuator location for achieving minimum norm controls in the context of approximate controllability for degenerate parabolic equations. We propose a formulation of the optimization problem that encompasses both the actuator location and its associated minimum norm control. Specifically, we transform the problem into a two-person zero-sum game problem, resulting in the development of four equivalent formulations. Finally, we establish the crucial result that the solution to the relaxed optimization problem serves as an optimal actuator location for the classical problem.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.