{"title":"带有 Probit 类型目标的连续等价包","authors":"Jamie Fravel, Robert Hildebrand, Laurel Travis","doi":"10.1007/s10957-024-02503-5","DOIUrl":null,"url":null,"abstract":"<p>We study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of identically distributed normal distributions (i.e., a sum of inverse probit functions). We prove structural results of this model under general assumptions and provide two algorithms for efficient optimization: (1) running in linear time and (2) running in a constant number of operations given preprocessing of the objective function.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"160 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Equality Knapsack with Probit-Style Objectives\",\"authors\":\"Jamie Fravel, Robert Hildebrand, Laurel Travis\",\"doi\":\"10.1007/s10957-024-02503-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of identically distributed normal distributions (i.e., a sum of inverse probit functions). We prove structural results of this model under general assumptions and provide two algorithms for efficient optimization: (1) running in linear time and (2) running in a constant number of operations given preprocessing of the objective function.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02503-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02503-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Continuous Equality Knapsack with Probit-Style Objectives
We study continuous, equality knapsack problems with uniform separable, non-convex objective functions that are continuous, antisymmetric about a point, and have concave and convex regions. For example, this model captures a simple allocation problem with the goal of optimizing an expected value where the objective is a sum of cumulative distribution functions of identically distributed normal distributions (i.e., a sum of inverse probit functions). We prove structural results of this model under general assumptions and provide two algorithms for efficient optimization: (1) running in linear time and (2) running in a constant number of operations given preprocessing of the objective function.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.