通过连续蒂勒规则进行分布聚合

Jonathan Wagner, Reshef Meir
{"title":"通过连续蒂勒规则进行分布聚合","authors":"Jonathan Wagner, Reshef Meir","doi":"arxiv-2408.01054","DOIUrl":null,"url":null,"abstract":"We introduce the class of \\textit{Continuous Thiele's Rules} that generalize\nthe familiar \\textbf{Thiele's rules} \\cite{janson2018phragmens} of multi-winner\nvoting to distribution aggregation problems. Each rule in that class maximizes\n$\\sum_if(\\pi^i)$ where $\\pi^i$ is an agent $i$'s satisfaction and $f$ could be\nany twice differentiable, increasing and concave real function. Based on a\nsingle quantity we call the \\textit{'Inequality Aversion'} of $f$ (elsewhere\nknown as \"Relative Risk Aversion\"), we derive bounds on the Egalitarian loss,\nwelfare loss and the approximation of \\textit{Average Fair Share}, leading to a\nquantifiable, continuous presentation of their inevitable trade-offs. In\nparticular, we show that the Nash Product Rule satisfies\\textit{ Average Fair\nShare} in our setting.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution Aggregation via Continuous Thiele's Rules\",\"authors\":\"Jonathan Wagner, Reshef Meir\",\"doi\":\"arxiv-2408.01054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the class of \\\\textit{Continuous Thiele's Rules} that generalize\\nthe familiar \\\\textbf{Thiele's rules} \\\\cite{janson2018phragmens} of multi-winner\\nvoting to distribution aggregation problems. Each rule in that class maximizes\\n$\\\\sum_if(\\\\pi^i)$ where $\\\\pi^i$ is an agent $i$'s satisfaction and $f$ could be\\nany twice differentiable, increasing and concave real function. Based on a\\nsingle quantity we call the \\\\textit{'Inequality Aversion'} of $f$ (elsewhere\\nknown as \\\"Relative Risk Aversion\\\"), we derive bounds on the Egalitarian loss,\\nwelfare loss and the approximation of \\\\textit{Average Fair Share}, leading to a\\nquantifiable, continuous presentation of their inevitable trade-offs. In\\nparticular, we show that the Nash Product Rule satisfies\\\\textit{ Average Fair\\nShare} in our setting.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一类 "连续蒂勒规则"(textit{Continuous Thiele's Rules}),它概括了我们熟悉的 "蒂勒规则"(textbf{Thiele's rules})。\cite{janson2018phragmens} 的多赢投票规则推广到分布聚合问题。该类规则中的每条规则都最大化了$sum_if(\pi^i)$,其中$\pi^i$是代理人$i$的满意度,$f$可以是任何两次可微分、递增和凹的实函数。基于我们称之为 $f$的\textit{'不平等厌恶'}(在其他地方称为 "相对风险厌恶")的单一数量,我们推导出了平均主义损失、福利损失和\textit{平均公平份额}的近似值的边界,从而得出了它们之间不可避免的权衡的可量化、连续的表述。特别是,我们证明了纳什产品规则在我们的环境中满足(textit{平均公平份额}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Aggregation via Continuous Thiele's Rules
We introduce the class of \textit{Continuous Thiele's Rules} that generalize the familiar \textbf{Thiele's rules} \cite{janson2018phragmens} of multi-winner voting to distribution aggregation problems. Each rule in that class maximizes $\sum_if(\pi^i)$ where $\pi^i$ is an agent $i$'s satisfaction and $f$ could be any twice differentiable, increasing and concave real function. Based on a single quantity we call the \textit{'Inequality Aversion'} of $f$ (elsewhere known as "Relative Risk Aversion"), we derive bounds on the Egalitarian loss, welfare loss and the approximation of \textit{Average Fair Share}, leading to a quantifiable, continuous presentation of their inevitable trade-offs. In particular, we show that the Nash Product Rule satisfies\textit{ Average Fair Share} in our setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信