具有 Kh25N10V8 合金沉积层的 08Kh14N5M2DL 钢种在高温下的耐磨性

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. V. Ovchinnikov, K. V. Malyutin
{"title":"具有 Kh25N10V8 合金沉积层的 08Kh14N5M2DL 钢种在高温下的耐磨性","authors":"V. V. Ovchinnikov,&nbsp;K. V. Malyutin","doi":"10.1134/S2075113324700709","DOIUrl":null,"url":null,"abstract":"<p>The results are given for impact of defects in the deposited layer on the durability of melted samples made of 08Kh14N5M2DL steel grade operating under conditions of friction at heating temperatures up to 800–900°C and under significant loads in the tribological contact zone. Defects in the deposited layer are represented by pores, the lack of fusion, and fractures. The defects inside samples undergoing friction tests are determined using X-ray computer tomography. It is found that the wear resistance of the surfacing layer without defects decreases both with growing test temperature and with increasing load applied to tribological contact. The presence of a microfracture pattern inside the deposited layer is crucial to dramatically decrease wear resistance. The presence of porosity in the deposited layer affects the wear to a lesser extent.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 4","pages":"1131 - 1137"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear Resistance of 08Kh14N5M2DL Steel Grade Having Deposited Kh25N10V8 Alloy Layer at Elevated Temperatures\",\"authors\":\"V. V. Ovchinnikov,&nbsp;K. V. Malyutin\",\"doi\":\"10.1134/S2075113324700709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results are given for impact of defects in the deposited layer on the durability of melted samples made of 08Kh14N5M2DL steel grade operating under conditions of friction at heating temperatures up to 800–900°C and under significant loads in the tribological contact zone. Defects in the deposited layer are represented by pores, the lack of fusion, and fractures. The defects inside samples undergoing friction tests are determined using X-ray computer tomography. It is found that the wear resistance of the surfacing layer without defects decreases both with growing test temperature and with increasing load applied to tribological contact. The presence of a microfracture pattern inside the deposited layer is crucial to dramatically decrease wear resistance. The presence of porosity in the deposited layer affects the wear to a lesser extent.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 4\",\"pages\":\"1131 - 1137\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究结果表明,沉积层中的缺陷对 08Kh14N5M2DL 钢级熔化试样的耐久性有影响,该试样在加热温度高达 800-900°C 的摩擦条件下工作,并在摩擦接触区承受较大载荷。沉积层中的缺陷表现为气孔、不熔合和断裂。通过 X 射线计算机断层扫描测定了进行摩擦试验的样品内部的缺陷。结果发现,无缺陷堆焊层的耐磨性会随着试验温度的升高和摩擦接触载荷的增加而降低。堆焊层内部存在微裂纹是显著降低耐磨性的关键。堆焊层中存在的孔隙对磨损的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wear Resistance of 08Kh14N5M2DL Steel Grade Having Deposited Kh25N10V8 Alloy Layer at Elevated Temperatures

Wear Resistance of 08Kh14N5M2DL Steel Grade Having Deposited Kh25N10V8 Alloy Layer at Elevated Temperatures

Wear Resistance of 08Kh14N5M2DL Steel Grade Having Deposited Kh25N10V8 Alloy Layer at Elevated Temperatures

The results are given for impact of defects in the deposited layer on the durability of melted samples made of 08Kh14N5M2DL steel grade operating under conditions of friction at heating temperatures up to 800–900°C and under significant loads in the tribological contact zone. Defects in the deposited layer are represented by pores, the lack of fusion, and fractures. The defects inside samples undergoing friction tests are determined using X-ray computer tomography. It is found that the wear resistance of the surfacing layer without defects decreases both with growing test temperature and with increasing load applied to tribological contact. The presence of a microfracture pattern inside the deposited layer is crucial to dramatically decrease wear resistance. The presence of porosity in the deposited layer affects the wear to a lesser extent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Materials: Applied Research
Inorganic Materials: Applied Research Engineering-Engineering (all)
CiteScore
0.90
自引率
0.00%
发文量
199
期刊介绍: Inorganic Materials: Applied Research  contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya  and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信