I. V. Minaev, A. E. Gvozdev, A. G. Kolmakov, A. N. Sergeev, S. N. Kutepov, D. S. Klementyev, I. V. Golyshev
{"title":"激光切割 40Kh 级结构合金钢齿齿轮时硬化表面层的形成","authors":"I. V. Minaev, A. E. Gvozdev, A. G. Kolmakov, A. N. Sergeev, S. N. Kutepov, D. S. Klementyev, I. V. Golyshev","doi":"10.1134/S2075113324700539","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The structural features and microhardness in the zone adjacent to the edges of the cut during laser cutting of gear blanks from a sheet of 40Kh steel 6 mm thick were studied. The possibility of combining laser cutting with surface hardening is shown. On average, the hardened surface layer in different sections of the cut has a thickness on the order of 150–250 μm with a maximum hardness approximately equivalent to 46–58 HRC, which is quite comparable to the hardening of 40Kh steel with most surface treatments.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 4","pages":"1009 - 1017"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of Hardened Surface Layer during Laser Cutting of Gears of Tooth Gears Made of Structural Alloy Steel Grade 40Kh\",\"authors\":\"I. V. Minaev, A. E. Gvozdev, A. G. Kolmakov, A. N. Sergeev, S. N. Kutepov, D. S. Klementyev, I. V. Golyshev\",\"doi\":\"10.1134/S2075113324700539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—The structural features and microhardness in the zone adjacent to the edges of the cut during laser cutting of gear blanks from a sheet of 40Kh steel 6 mm thick were studied. The possibility of combining laser cutting with surface hardening is shown. On average, the hardened surface layer in different sections of the cut has a thickness on the order of 150–250 μm with a maximum hardness approximately equivalent to 46–58 HRC, which is quite comparable to the hardening of 40Kh steel with most surface treatments.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 4\",\"pages\":\"1009 - 1017\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Formation of Hardened Surface Layer during Laser Cutting of Gears of Tooth Gears Made of Structural Alloy Steel Grade 40Kh
Abstract—The structural features and microhardness in the zone adjacent to the edges of the cut during laser cutting of gear blanks from a sheet of 40Kh steel 6 mm thick were studied. The possibility of combining laser cutting with surface hardening is shown. On average, the hardened surface layer in different sections of the cut has a thickness on the order of 150–250 μm with a maximum hardness approximately equivalent to 46–58 HRC, which is quite comparable to the hardening of 40Kh steel with most surface treatments.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.