{"title":"基于马来酸化高密度聚乙烯和石墨的纳米复合材料结晶的动力学规律性","authors":"Kh. V. Allahverdiyeva, N. T. Kakhramanov","doi":"10.1134/S2075113324700436","DOIUrl":null,"url":null,"abstract":"<p>The results of the stepwise-dilatometry study of the influence of the graphite content on the temperature dependence of the specific volume of nanocomposites based on high-density polyethylene and graphite are presented. It has been found that, for nanocomposites with the graphite content of 1.0–10 wt %, the first-order phase transition occurs at 115°C. For samples containing 15–20 wt % graphite, this transition occurs at 110°C. On the basis of the dilatometric curves, the glass transition temperatures of the nanocomposites have been determined. The kinetics and mechanism of crystallization of nanocomposites have been considered.</p>","PeriodicalId":586,"journal":{"name":"Inorganic Materials: Applied Research","volume":"15 4","pages":"943 - 948"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic Regularities of Crystallization of Nanocomposites Based on Maleated High-Density Polyethylene and Graphite\",\"authors\":\"Kh. V. Allahverdiyeva, N. T. Kakhramanov\",\"doi\":\"10.1134/S2075113324700436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of the stepwise-dilatometry study of the influence of the graphite content on the temperature dependence of the specific volume of nanocomposites based on high-density polyethylene and graphite are presented. It has been found that, for nanocomposites with the graphite content of 1.0–10 wt %, the first-order phase transition occurs at 115°C. For samples containing 15–20 wt % graphite, this transition occurs at 110°C. On the basis of the dilatometric curves, the glass transition temperatures of the nanocomposites have been determined. The kinetics and mechanism of crystallization of nanocomposites have been considered.</p>\",\"PeriodicalId\":586,\"journal\":{\"name\":\"Inorganic Materials: Applied Research\",\"volume\":\"15 4\",\"pages\":\"943 - 948\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials: Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2075113324700436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials: Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2075113324700436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinetic Regularities of Crystallization of Nanocomposites Based on Maleated High-Density Polyethylene and Graphite
The results of the stepwise-dilatometry study of the influence of the graphite content on the temperature dependence of the specific volume of nanocomposites based on high-density polyethylene and graphite are presented. It has been found that, for nanocomposites with the graphite content of 1.0–10 wt %, the first-order phase transition occurs at 115°C. For samples containing 15–20 wt % graphite, this transition occurs at 110°C. On the basis of the dilatometric curves, the glass transition temperatures of the nanocomposites have been determined. The kinetics and mechanism of crystallization of nanocomposites have been considered.
期刊介绍:
Inorganic Materials: Applied Research contains translations of research articles devoted to applied aspects of inorganic materials. Best articles are selected from four Russian periodicals: Materialovedenie, Perspektivnye Materialy, Fizika i Khimiya Obrabotki Materialov, and Voprosy Materialovedeniya and translated into English. The journal reports recent achievements in materials science: physical and chemical bases of materials science; effects of synergism in composite materials; computer simulations; creation of new materials (including carbon-based materials and ceramics, semiconductors, superconductors, composite materials, polymers, materials for nuclear engineering, materials for aircraft and space engineering, materials for quantum electronics, materials for electronics and optoelectronics, materials for nuclear and thermonuclear power engineering, radiation-hardened materials, materials for use in medicine, etc.); analytical techniques; structure–property relationships; nanostructures and nanotechnologies; advanced technologies; use of hydrogen in structural materials; and economic and environmental issues. The journal also considers engineering issues of materials processing with plasma, high-gradient crystallization, laser technology, and ultrasonic technology. Currently the journal does not accept direct submissions, but submissions to one of the source journals is possible.