利用 HERGAST 揭示超大 ST 切片的精细空间结构并放大基因表达信号

Yuqiao Gong, Xin Yuan, Qiong Jiao, Zhangsheng Yu
{"title":"利用 HERGAST 揭示超大 ST 切片的精细空间结构并放大基因表达信号","authors":"Yuqiao Gong, Xin Yuan, Qiong Jiao, Zhangsheng Yu","doi":"10.1101/2024.08.09.607422","DOIUrl":null,"url":null,"abstract":"We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large ST data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conque framework specially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential oversmoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulation, HERGAST consistently outperformed other methods across all settings with more than 10% average gaining. In real-world data, HERGAST's high-precision spatial clustering enabled finding SPP1+ macrophages intermingled in tumors in colorectal cancer, while the enhanced gene expression signal enabled discovering unique spatial expression pattern of key genes in breast cancer.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Fine-scale Spatial Structures and Amplifying Gene Expression Signals in Ultra-Large ST slices with HERGAST\",\"authors\":\"Yuqiao Gong, Xin Yuan, Qiong Jiao, Zhangsheng Yu\",\"doi\":\"10.1101/2024.08.09.607422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large ST data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conque framework specially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential oversmoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulation, HERGAST consistently outperformed other methods across all settings with more than 10% average gaining. In real-world data, HERGAST's high-precision spatial clustering enabled finding SPP1+ macrophages intermingled in tumors in colorectal cancer, while the enhanced gene expression signal enabled discovering unique spatial expression pattern of key genes in breast cancer.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.09.607422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.09.607422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个用于超大规模和超高分辨率空间转录组学数据的空间结构识别和信号放大的系统--HERGAST。为了处理超大规模的空间转录组学数据,我们考虑了分而治之的策略,设计了一个专门用于空间转录组学数据分析的 "分-迭-治 "框架,其他计算方法也可以采用这个框架,将其扩展到超大规模的空间转录组学数据分析中。为了解决数据分割可能带来的过平滑问题,我们构建了一个异构图网络,将局部和全局空间关系都纳入其中。在模拟实验中,HERGAST 在所有情况下的表现都优于其他方法,平均增益超过 10%。在真实世界数据中,HERGAST的高精度空间聚类能够发现结直肠癌肿瘤中混杂的SPP1+巨噬细胞,而增强的基因表达信号能够发现乳腺癌关键基因的独特空间表达模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Fine-scale Spatial Structures and Amplifying Gene Expression Signals in Ultra-Large ST slices with HERGAST
We propose HERGAST, a system for spatial structure identification and signal amplification in ultra-large-scale and ultra-high-resolution spatial transcriptomics data. To handle ultra-large ST data, we consider the divide and conquer strategy and devise a Divide-Iterate-Conque framework specially for spatial transcriptomics data analysis, which can also be adopted by other computational methods for extending to ultra-large-scale ST data analysis. To tackle the potential oversmoothing problem arising from data splitting, we construct a heterogeneous graph network to incorporate both local and global spatial relationships. In simulation, HERGAST consistently outperformed other methods across all settings with more than 10% average gaining. In real-world data, HERGAST's high-precision spatial clustering enabled finding SPP1+ macrophages intermingled in tumors in colorectal cancer, while the enhanced gene expression signal enabled discovering unique spatial expression pattern of key genes in breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信