{"title":"三角形分形板弯曲元件","authors":"Marcelo Epstein, Philip Vernon","doi":"10.1007/s00033-024-02300-0","DOIUrl":null,"url":null,"abstract":"<p>The stiffness matrix of a structural Sierpiński triangle under conditions of transversal bending is presented. The derivation is based exclusively on considerations of symmetry, equilibrium, and self-similarity. As a result, the stiffness matrix is shown to depend on a single material parameter. An illustrative numerical example is presented on the basis of an ad hoc computer code for the assembled stiffness of an overall structure consisting of a grid of fractal elements.\n</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A triangular fractal plate bending element\",\"authors\":\"Marcelo Epstein, Philip Vernon\",\"doi\":\"10.1007/s00033-024-02300-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stiffness matrix of a structural Sierpiński triangle under conditions of transversal bending is presented. The derivation is based exclusively on considerations of symmetry, equilibrium, and self-similarity. As a result, the stiffness matrix is shown to depend on a single material parameter. An illustrative numerical example is presented on the basis of an ad hoc computer code for the assembled stiffness of an overall structure consisting of a grid of fractal elements.\\n</p>\",\"PeriodicalId\":501481,\"journal\":{\"name\":\"Zeitschrift für angewandte Mathematik und Physik\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-024-02300-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02300-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The stiffness matrix of a structural Sierpiński triangle under conditions of transversal bending is presented. The derivation is based exclusively on considerations of symmetry, equilibrium, and self-similarity. As a result, the stiffness matrix is shown to depend on a single material parameter. An illustrative numerical example is presented on the basis of an ad hoc computer code for the assembled stiffness of an overall structure consisting of a grid of fractal elements.