预测哺乳动物细胞中信使 RNA 的翻译效率

Dinghai Zheng, Jun Wang, Logan Persyn, Yue Liu, Fernando Ulloa Montoya, Can Cenik, Vikram Agarwal
{"title":"预测哺乳动物细胞中信使 RNA 的翻译效率","authors":"Dinghai Zheng, Jun Wang, Logan Persyn, Yue Liu, Fernando Ulloa Montoya, Can Cenik, Vikram Agarwal","doi":"10.1101/2024.08.11.607362","DOIUrl":null,"url":null,"abstract":"The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5′ UTR sequence, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5′ UTR, CDS, and 3′ UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5′ UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the translation efficiency of messenger RNA in mammalian cells\",\"authors\":\"Dinghai Zheng, Jun Wang, Logan Persyn, Yue Liu, Fernando Ulloa Montoya, Can Cenik, Vikram Agarwal\",\"doi\":\"10.1101/2024.08.11.607362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5′ UTR sequence, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5′ UTR, CDS, and 3′ UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5′ UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.11.607362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.11.607362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在哺乳动物细胞中,人们对mRNA序列对翻译控制的影响程度知之甚少。在这里,我们构建并利用了 3,819 个核糖体分析数据集汇编,将它们提炼成一个涵盖转录组的翻译效率(TE)测量图谱,其中包括 140 种人类和小鼠细胞类型。随后,我们开发了多任务深度卷积神经网络 RiboNN 和经典机器学习模型,根据序列编码的 mRNA 特征预测数百种细胞类型中的 TE,取得了最先进的性能(跨细胞类型平均 TE 的人类 r=0.79 和小鼠 r=0.78)。早期的模型大多只考虑 5′ UTR 序列,而 RiboNN 则综合了全长 mRNA 序列的贡献,了解到 5′ UTR、CDS 和 3′ UTR 在哺乳动物 TE 的规范中分别拥有约 67%、31% 和 2% 的每核苷酸信息密度。对 RiboNN 的解释显示,低水平二核苷酸和三核苷酸特征(即包括密码子)的空间定位在很大程度上解释了模型的性能,捕捉到了核糖体过程性和 tRNA 丰度如何控制翻译输出等机制原理。RiboNN 可以预测碱基修饰治疗 RNA 的翻译行为,并能解释人类 5′ UTR 的进化选择压力。最后,它发现了一种支配 mRNA 调控的共同语言,并强调了哺乳动物体内 mRNA 翻译、稳定性和定位的相互关联性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting the translation efficiency of messenger RNA in mammalian cells
The degree to which translational control is specified by mRNA sequence is poorly understood in mammalian cells. Here, we constructed and leveraged a compendium of 3,819 ribosomal profiling datasets, distilling them into a transcriptome-wide atlas of translation efficiency (TE) measurements encompassing >140 human and mouse cell types. We subsequently developed RiboNN, a multitask deep convolutional neural network, and classic machine learning models to predict TEs in hundreds of cell types from sequence-encoded mRNA features, achieving state-of-the-art performance (r=0.79 in human and r=0.78 in mouse for mean TE across cell types). While the majority of earlier models solely considered 5′ UTR sequence, RiboNN integrates contributions from the full-length mRNA sequence, learning that the 5′ UTR, CDS, and 3′ UTR respectively possess ~67%, 31%, and 2% per-nucleotide information density in the specification of mammalian TEs. Interpretation of RiboNN revealed that the spatial positioning of low-level di- and tri-nucleotide features (i.e., including codons) largely explain model performance, capturing mechanistic principles such as how ribosomal processivity and tRNA abundance control translational output. RiboNN is predictive of the translational behavior of base-modified therapeutic RNA, and can explain evolutionary selection pressures in human 5′ UTRs. Finally, it detects a common language governing mRNA regulatory control and highlights the interconnectedness of mRNA translation, stability, and localization in mammalian organisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信