关于 $$\mathbb {Z}_{4} 上的准扭曲码和广义准扭曲码+u\mathbb {Z}_{4}$$

Ayoub Mounir, Abdelfattah Haily
{"title":"关于 $$\\mathbb {Z}_{4} 上的准扭曲码和广义准扭曲码+u\\mathbb {Z}_{4}$$","authors":"Ayoub Mounir, Abdelfattah Haily","doi":"10.1007/s12095-024-00732-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, our main objective is to examine the properties and characteristics of 1-generator <span>\\((2 + u)\\)</span>-quasi-twisted (QT) codes and <span>\\((2 + u)\\)</span>-generalized quasi-twisted (GQT) codes over the ring <span>\\(\\mathbb {Z}_4 +u\\mathbb {Z}_4 \\)</span>, with <span>\\(u^2=1\\)</span>. We determine the structure of the generators and minimal generating sets for both 1-generator <span>\\((2 + u)\\)</span>-QT and <span>\\((2 + u)\\)</span>-GQT codes. Additionally, we establish a lower bound for the minimum distance of free 1-generator <span>\\((2 + u)\\)</span>-QT and <span>\\((2 + u)\\)</span>-GQT codes over <i>R</i>. Furthermore, we present some numerical examples that illustrate the construction of some optimal <span>\\(\\mathbb {Z}_4\\)</span>-linear codes using the Gray map.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On quasi-twisted codes and generalized quasi-twisted codes over $$\\\\mathbb {Z}_{4} +u\\\\mathbb {Z}_{4}$$\",\"authors\":\"Ayoub Mounir, Abdelfattah Haily\",\"doi\":\"10.1007/s12095-024-00732-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, our main objective is to examine the properties and characteristics of 1-generator <span>\\\\((2 + u)\\\\)</span>-quasi-twisted (QT) codes and <span>\\\\((2 + u)\\\\)</span>-generalized quasi-twisted (GQT) codes over the ring <span>\\\\(\\\\mathbb {Z}_4 +u\\\\mathbb {Z}_4 \\\\)</span>, with <span>\\\\(u^2=1\\\\)</span>. We determine the structure of the generators and minimal generating sets for both 1-generator <span>\\\\((2 + u)\\\\)</span>-QT and <span>\\\\((2 + u)\\\\)</span>-GQT codes. Additionally, we establish a lower bound for the minimum distance of free 1-generator <span>\\\\((2 + u)\\\\)</span>-QT and <span>\\\\((2 + u)\\\\)</span>-GQT codes over <i>R</i>. Furthermore, we present some numerical examples that illustrate the construction of some optimal <span>\\\\(\\\\mathbb {Z}_4\\\\)</span>-linear codes using the Gray map.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00732-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00732-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们的主要目标是研究环 \(\mathbb {Z}_4 +u\mathbb {Z}_4 \)上的、带有 \(u^2=1\)的 1-生成器 \((2+u)\)-准扭曲(QT)码和 \((2+u)\)-广义准扭曲(GQT)码的性质和特征。我们确定了 1 个生成器 \((2 + u)\)-QT 和 \((2 + u)\)-GQT 码的生成器和最小生成集的结构。此外,我们还为 R 上的自由 1-生成器 ((2 + u))-QT 和 ((2 + u))-GQT 码的最小距离建立了一个下限。此外,我们还给出了一些数值示例,说明了使用格雷映射构造一些最优 (\mathbb {Z}_4\)-线性码的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On quasi-twisted codes and generalized quasi-twisted codes over $$\mathbb {Z}_{4} +u\mathbb {Z}_{4}$$

In this paper, our main objective is to examine the properties and characteristics of 1-generator \((2 + u)\)-quasi-twisted (QT) codes and \((2 + u)\)-generalized quasi-twisted (GQT) codes over the ring \(\mathbb {Z}_4 +u\mathbb {Z}_4 \), with \(u^2=1\). We determine the structure of the generators and minimal generating sets for both 1-generator \((2 + u)\)-QT and \((2 + u)\)-GQT codes. Additionally, we establish a lower bound for the minimum distance of free 1-generator \((2 + u)\)-QT and \((2 + u)\)-GQT codes over R. Furthermore, we present some numerical examples that illustrate the construction of some optimal \(\mathbb {Z}_4\)-linear codes using the Gray map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信