学习时态特性的复杂性

Benjamin Bordais, Daniel Neider, Rajarshi Roy
{"title":"学习时态特性的复杂性","authors":"Benjamin Bordais, Daniel Neider, Rajarshi Roy","doi":"arxiv-2408.04486","DOIUrl":null,"url":null,"abstract":"We consider the problem of learning temporal logic formulas from examples of\nsystem behavior. Learning temporal properties has crystallized as an effective\nmean to explain complex temporal behaviors. Several efficient algorithms have\nbeen designed for learning temporal formulas. However, the theoretical\nunderstanding of the complexity of the learning decision problems remains\nlargely unexplored. To address this, we study the complexity of the passive\nlearning problems of three prominent temporal logics, Linear Temporal Logic\n(LTL), Computation Tree Logic (CTL) and Alternating-time Temporal Logic (ATL)\nand several of their fragments. We show that learning formulas using an\nunbounded amount of occurrences of binary operators is NP-complete for all of\nthese logics. On the other hand, when investigating the complexity of learning\nformulas with bounded amount of occurrences of binary operators, we exhibit\ndiscrepancies between the complexity of learning LTL, CTL and ATL formulas\n(with a varying number of agents).","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of Learning Temporal Properties\",\"authors\":\"Benjamin Bordais, Daniel Neider, Rajarshi Roy\",\"doi\":\"arxiv-2408.04486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of learning temporal logic formulas from examples of\\nsystem behavior. Learning temporal properties has crystallized as an effective\\nmean to explain complex temporal behaviors. Several efficient algorithms have\\nbeen designed for learning temporal formulas. However, the theoretical\\nunderstanding of the complexity of the learning decision problems remains\\nlargely unexplored. To address this, we study the complexity of the passive\\nlearning problems of three prominent temporal logics, Linear Temporal Logic\\n(LTL), Computation Tree Logic (CTL) and Alternating-time Temporal Logic (ATL)\\nand several of their fragments. We show that learning formulas using an\\nunbounded amount of occurrences of binary operators is NP-complete for all of\\nthese logics. On the other hand, when investigating the complexity of learning\\nformulas with bounded amount of occurrences of binary operators, we exhibit\\ndiscrepancies between the complexity of learning LTL, CTL and ATL formulas\\n(with a varying number of agents).\",\"PeriodicalId\":501208,\"journal\":{\"name\":\"arXiv - CS - Logic in Computer Science\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是从系统行为实例中学习时态逻辑公式。学习时态属性已经成为解释复杂时态行为的有效方法。目前已经设计出了几种学习时态公式的高效算法。然而,人们对学习决策问题复杂性的理论认识还远远不够。为了解决这个问题,我们研究了三种著名时态逻辑(线性时态逻辑(LTL)、计算树逻辑(CTL)和交替时间时态逻辑(ATL))及其几个片段的被动学习问题的复杂性。我们的研究表明,对于所有这些逻辑,使用二元运算符的无界出现量来学习公式是 NP-完全的。另一方面,在研究学习二元运算符出现次数有界的公式的复杂性时,我们发现学习 LTL、CTL 和 ATL 公式(代理数量不同)的复杂性之间存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity of Learning Temporal Properties
We consider the problem of learning temporal logic formulas from examples of system behavior. Learning temporal properties has crystallized as an effective mean to explain complex temporal behaviors. Several efficient algorithms have been designed for learning temporal formulas. However, the theoretical understanding of the complexity of the learning decision problems remains largely unexplored. To address this, we study the complexity of the passive learning problems of three prominent temporal logics, Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and Alternating-time Temporal Logic (ATL) and several of their fragments. We show that learning formulas using an unbounded amount of occurrences of binary operators is NP-complete for all of these logics. On the other hand, when investigating the complexity of learning formulas with bounded amount of occurrences of binary operators, we exhibit discrepancies between the complexity of learning LTL, CTL and ATL formulas (with a varying number of agents).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信