Klaudia Halászová, Lenka Lackóová, Thomas Panagopoulos
{"title":"对农业景观中地表地形和表土颗粒组成变化的长期评估","authors":"Klaudia Halászová, Lenka Lackóová, Thomas Panagopoulos","doi":"10.3389/fenvs.2024.1445068","DOIUrl":null,"url":null,"abstract":"Understanding long-term changes in topography and topsoil grain composition is crucial for the management of agricultural landscapes, especially in areas prone to wind erosion. This study investigates long-term changes in topography and topsoil grain composition within an agricultural landscape in south-western Slovakia. To analyse topographic changes over time, we used high-precision positioning measurements and airborne laser scanning to create digital terrain models (DTM) for the years 2011, 2017 and 2020. To assess changes in soil grain composition, we performed grain size analyses on soil samples collected during three different periods: M1 (1961–1970), M2 (2009–2015) and M3 (2015–2016). Changes in soil texture were evaluated to understand the impact of wind erosion on soil composition. The influence of windbreaks was also analysed by comparing the accumulation and deflation processes. The results showed significant changes in both topography and soil texture over the study period. The DTMs showed marked differences in the accumulation and deflation processes, highlighting areas affected by wind erosion. Comparisons of soil samples showed a shift in dominant soil types from loam and clay loam to silty loam, highlighting the effects of wind erosion. Analysis revealed a decrease in clay and silt content and an increase in sand content, indicating wind-induced soil degradation. The presence of windbreaks played a crucial role in reducing soil erosion by reducing wind speed, promoting soil accumulation and stabilising the landscape up to 80 m windward and 20 m leeward. The study highlights the complex interplay of climate and wind factors in shaping topography and soil properties and emphasises the protective role of windbreaks in agricultural landscapes over time. Our results show that wind erosion significantly alters soil texture, which can affect agricultural productivity. However, windbreaks have proven to be an effective measure in reducing soil erosion and maintaining soil quality.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term evaluation of surface topographic and topsoil grain composition changes in an agricultural landscape\",\"authors\":\"Klaudia Halászová, Lenka Lackóová, Thomas Panagopoulos\",\"doi\":\"10.3389/fenvs.2024.1445068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding long-term changes in topography and topsoil grain composition is crucial for the management of agricultural landscapes, especially in areas prone to wind erosion. This study investigates long-term changes in topography and topsoil grain composition within an agricultural landscape in south-western Slovakia. To analyse topographic changes over time, we used high-precision positioning measurements and airborne laser scanning to create digital terrain models (DTM) for the years 2011, 2017 and 2020. To assess changes in soil grain composition, we performed grain size analyses on soil samples collected during three different periods: M1 (1961–1970), M2 (2009–2015) and M3 (2015–2016). Changes in soil texture were evaluated to understand the impact of wind erosion on soil composition. The influence of windbreaks was also analysed by comparing the accumulation and deflation processes. The results showed significant changes in both topography and soil texture over the study period. The DTMs showed marked differences in the accumulation and deflation processes, highlighting areas affected by wind erosion. Comparisons of soil samples showed a shift in dominant soil types from loam and clay loam to silty loam, highlighting the effects of wind erosion. Analysis revealed a decrease in clay and silt content and an increase in sand content, indicating wind-induced soil degradation. The presence of windbreaks played a crucial role in reducing soil erosion by reducing wind speed, promoting soil accumulation and stabilising the landscape up to 80 m windward and 20 m leeward. The study highlights the complex interplay of climate and wind factors in shaping topography and soil properties and emphasises the protective role of windbreaks in agricultural landscapes over time. Our results show that wind erosion significantly alters soil texture, which can affect agricultural productivity. However, windbreaks have proven to be an effective measure in reducing soil erosion and maintaining soil quality.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1445068\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1445068","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long-term evaluation of surface topographic and topsoil grain composition changes in an agricultural landscape
Understanding long-term changes in topography and topsoil grain composition is crucial for the management of agricultural landscapes, especially in areas prone to wind erosion. This study investigates long-term changes in topography and topsoil grain composition within an agricultural landscape in south-western Slovakia. To analyse topographic changes over time, we used high-precision positioning measurements and airborne laser scanning to create digital terrain models (DTM) for the years 2011, 2017 and 2020. To assess changes in soil grain composition, we performed grain size analyses on soil samples collected during three different periods: M1 (1961–1970), M2 (2009–2015) and M3 (2015–2016). Changes in soil texture were evaluated to understand the impact of wind erosion on soil composition. The influence of windbreaks was also analysed by comparing the accumulation and deflation processes. The results showed significant changes in both topography and soil texture over the study period. The DTMs showed marked differences in the accumulation and deflation processes, highlighting areas affected by wind erosion. Comparisons of soil samples showed a shift in dominant soil types from loam and clay loam to silty loam, highlighting the effects of wind erosion. Analysis revealed a decrease in clay and silt content and an increase in sand content, indicating wind-induced soil degradation. The presence of windbreaks played a crucial role in reducing soil erosion by reducing wind speed, promoting soil accumulation and stabilising the landscape up to 80 m windward and 20 m leeward. The study highlights the complex interplay of climate and wind factors in shaping topography and soil properties and emphasises the protective role of windbreaks in agricultural landscapes over time. Our results show that wind erosion significantly alters soil texture, which can affect agricultural productivity. However, windbreaks have proven to be an effective measure in reducing soil erosion and maintaining soil quality.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.