Tao Liu, Mingming An, Jingrui Chen, Yuanyuan Liu, Le Chao, Jichen Liu, Mingliang Zhang
{"title":"中国三个沿海海湾不同鱼类的甲基汞污染水平变化及相关健康风险","authors":"Tao Liu, Mingming An, Jingrui Chen, Yuanyuan Liu, Le Chao, Jichen Liu, Mingliang Zhang","doi":"10.3389/fenvs.2024.1376882","DOIUrl":null,"url":null,"abstract":"The growing atmospheric mercury (Hg) emissions in China have raised ongoing concerns regarding contamination in marine fish. To better understand the pollution patterns and associated risks, we examined methylmercury (MeHg) content in demersal and pelagic fish from four commonly found families in three geographically distinct bays along the Chinese coast. We identified significant spatial variations in MeHg levels within the same fish family across regions. Specifically, fish collected from the Beibu Gulf in the South China Sea consistently exhibited significantly higher MeHg levels compared to those from the Laizhou Bay in the Northeast and/or Haizhou Bay in the East of China. In contrast, MeHg levels in fish collected from Haizhou Bay consistently remained the lowest. Within each region, we observed significantly higher MeHg concentrations in demersal species compared to pelagic species. This trend was particularly evident in fish species including bartail flathead (<jats:italic>Platycephalus indicus</jats:italic>), small-scale tongue sole (<jats:italic>Cynoglossus microlepis</jats:italic>) and greater lizardfish (<jats:italic>Saurida tumbil</jats:italic>) from the Beibu Gulf (0.50, 0.21, and 0.18 mg/kg dw, respectively), as well as bartail flathead and slender lizardfish (<jats:italic>Saurida elongata</jats:italic>) from Laizhou Bay (0.09 and 0.12 mg/kg dw, respectively). By comparison, MeHg content in silver pomfret (<jats:italic>Pampus argenteus</jats:italic>) from all three regions consistently remained relatively lower than in other species. Using target hazardous quotient (THQ) calculations, we estimated potential health risks in local populations associated with the consumption of the studied fish species. Our results showed a lack of apparent health risks to local residents, as all THQ values obtained from the three regions fell within the safe limits (0.02–0.94). However, it remains important to conduct additional assessments and spatiotemporal monitoring that encompass a broader range of species and regions.","PeriodicalId":12460,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in methylmercury contamination levels and associated health risks in different fish species across three coastal bays in China\",\"authors\":\"Tao Liu, Mingming An, Jingrui Chen, Yuanyuan Liu, Le Chao, Jichen Liu, Mingliang Zhang\",\"doi\":\"10.3389/fenvs.2024.1376882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing atmospheric mercury (Hg) emissions in China have raised ongoing concerns regarding contamination in marine fish. To better understand the pollution patterns and associated risks, we examined methylmercury (MeHg) content in demersal and pelagic fish from four commonly found families in three geographically distinct bays along the Chinese coast. We identified significant spatial variations in MeHg levels within the same fish family across regions. Specifically, fish collected from the Beibu Gulf in the South China Sea consistently exhibited significantly higher MeHg levels compared to those from the Laizhou Bay in the Northeast and/or Haizhou Bay in the East of China. In contrast, MeHg levels in fish collected from Haizhou Bay consistently remained the lowest. Within each region, we observed significantly higher MeHg concentrations in demersal species compared to pelagic species. This trend was particularly evident in fish species including bartail flathead (<jats:italic>Platycephalus indicus</jats:italic>), small-scale tongue sole (<jats:italic>Cynoglossus microlepis</jats:italic>) and greater lizardfish (<jats:italic>Saurida tumbil</jats:italic>) from the Beibu Gulf (0.50, 0.21, and 0.18 mg/kg dw, respectively), as well as bartail flathead and slender lizardfish (<jats:italic>Saurida elongata</jats:italic>) from Laizhou Bay (0.09 and 0.12 mg/kg dw, respectively). By comparison, MeHg content in silver pomfret (<jats:italic>Pampus argenteus</jats:italic>) from all three regions consistently remained relatively lower than in other species. Using target hazardous quotient (THQ) calculations, we estimated potential health risks in local populations associated with the consumption of the studied fish species. Our results showed a lack of apparent health risks to local residents, as all THQ values obtained from the three regions fell within the safe limits (0.02–0.94). However, it remains important to conduct additional assessments and spatiotemporal monitoring that encompass a broader range of species and regions.\",\"PeriodicalId\":12460,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1376882\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1376882","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Variations in methylmercury contamination levels and associated health risks in different fish species across three coastal bays in China
The growing atmospheric mercury (Hg) emissions in China have raised ongoing concerns regarding contamination in marine fish. To better understand the pollution patterns and associated risks, we examined methylmercury (MeHg) content in demersal and pelagic fish from four commonly found families in three geographically distinct bays along the Chinese coast. We identified significant spatial variations in MeHg levels within the same fish family across regions. Specifically, fish collected from the Beibu Gulf in the South China Sea consistently exhibited significantly higher MeHg levels compared to those from the Laizhou Bay in the Northeast and/or Haizhou Bay in the East of China. In contrast, MeHg levels in fish collected from Haizhou Bay consistently remained the lowest. Within each region, we observed significantly higher MeHg concentrations in demersal species compared to pelagic species. This trend was particularly evident in fish species including bartail flathead (Platycephalus indicus), small-scale tongue sole (Cynoglossus microlepis) and greater lizardfish (Saurida tumbil) from the Beibu Gulf (0.50, 0.21, and 0.18 mg/kg dw, respectively), as well as bartail flathead and slender lizardfish (Saurida elongata) from Laizhou Bay (0.09 and 0.12 mg/kg dw, respectively). By comparison, MeHg content in silver pomfret (Pampus argenteus) from all three regions consistently remained relatively lower than in other species. Using target hazardous quotient (THQ) calculations, we estimated potential health risks in local populations associated with the consumption of the studied fish species. Our results showed a lack of apparent health risks to local residents, as all THQ values obtained from the three regions fell within the safe limits (0.02–0.94). However, it remains important to conduct additional assessments and spatiotemporal monitoring that encompass a broader range of species and regions.
期刊介绍:
Our natural world is experiencing a state of rapid change unprecedented in the presence of humans. The changes affect virtually all physical, chemical and biological systems on Earth. The interaction of these systems leads to tipping points, feedbacks and amplification of effects. In virtually all cases, the causes of environmental change can be traced to human activity through either direct interventions as a consequence of pollution, or through global warming from greenhouse case emissions. Well-formulated and internationally-relevant policies to mitigate the change, or adapt to the consequences, that will ensure our ability to thrive in the coming decades are badly needed. Without proper understanding of the processes involved, and deep understanding of the likely impacts of bad decisions or inaction, the security of food, water and energy is a risk. Left unchecked shortages of these basic commodities will lead to migration, global geopolitical tension and conflict. This represents the major challenge of our time. We are the first generation to appreciate the problem and we will be judged in future by our ability to determine and take the action necessary. Appropriate knowledge of the condition of our natural world, appreciation of the changes occurring, and predictions of how the future will develop are requisite to the definition and implementation of solutions.
Frontiers in Environmental Science publishes research at the cutting edge of knowledge of our natural world and its various intersections with society. It bridges between the identification and measurement of change, comprehension of the processes responsible, and the measures needed to reduce their impact. Its aim is to assist the formulation of policies, by offering sound scientific evidence on environmental science, that will lead to a more inhabitable and sustainable world for the generations to come.