某些类型二项式微分方程的全解

IF 0.6 4区 数学 Q3 MATHEMATICS
Shuang-Shuang Yang, Liang-Wen Liao, Xiao-Qing Lu
{"title":"某些类型二项式微分方程的全解","authors":"Shuang-Shuang Yang, Liang-Wen Liao, Xiao-Qing Lu","doi":"10.1007/s40315-024-00556-1","DOIUrl":null,"url":null,"abstract":"<p>Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations </p><span>$$\\begin{aligned} a(z)ff''+b(z)(f')^2=c(z)e^{2q(z)}; \\\\ a(z)f'f''+b(z)f^2=c(z)e^{2q(z)}, \\end{aligned}$$</span><p>where <i>a</i>, <i>b</i>, <i>c</i> are polynomials with no common zeros satisfying <span>\\(abc\\not \\equiv 0\\)</span>, and <i>q</i> is a non-constant polynomial.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entire Solutions of Certain Type Binomial Differential Equations\",\"authors\":\"Shuang-Shuang Yang, Liang-Wen Liao, Xiao-Qing Lu\",\"doi\":\"10.1007/s40315-024-00556-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations </p><span>$$\\\\begin{aligned} a(z)ff''+b(z)(f')^2=c(z)e^{2q(z)}; \\\\\\\\ a(z)f'f''+b(z)f^2=c(z)e^{2q(z)}, \\\\end{aligned}$$</span><p>where <i>a</i>, <i>b</i>, <i>c</i> are polynomials with no common zeros satisfying <span>\\\\(abc\\\\not \\\\equiv 0\\\\)</span>, and <i>q</i> is a non-constant polynomial.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00556-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00556-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受 Gundersen 和 Yang 提出的问题启发,我们研究了以下两类二叉微分方程全解的精确形式 $$$begin{aligned} a(z)ff''+b(z)(f')^2=c(z)e^{2q(z)};\\ a(z)f'f''+b(z)f^2=c(z)e^{2q(z)}, end{aligned}$$其中 a、b、c 是满足 \(abc\not \equiv 0\) 的无公共零点的多项式,q 是一个非常数多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entire Solutions of Certain Type Binomial Differential Equations

Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations

$$\begin{aligned} a(z)ff''+b(z)(f')^2=c(z)e^{2q(z)}; \\ a(z)f'f''+b(z)f^2=c(z)e^{2q(z)}, \end{aligned}$$

where abc are polynomials with no common zeros satisfying \(abc\not \equiv 0\), and q is a non-constant polynomial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信