霍普菲亚阿贝尔群的两种概括a

Andrey R. Chekhlov, Peter V. Danchev, Brendan Goldsmith, Patrick W. Keef
{"title":"霍普菲亚阿贝尔群的两种概括a","authors":"Andrey R. Chekhlov, Peter V. Danchev, Brendan Goldsmith, Patrick W. Keef","doi":"arxiv-2408.01277","DOIUrl":null,"url":null,"abstract":"This paper targets to generalize the notion of Hopfian groups in the\ncommutative case by defining the so-called {\\bf relatively Hopfian groups} and\n{\\bf weakly Hopfian groups}, and establishing some their crucial properties and\ncharacterizations. Specifically, we prove that for a reduced Abelian $p$-group\n$G$ such that $p^{\\omega}G$ is Hopfian (in particular, is finite), the notions\nof relative Hopficity and ordinary Hopficity do coincide. We also show that if\n$G$ is a reduced Abelian $p$-group such that $p^{\\omega}G$ is bounded and\n$G/p^{\\omega}G$ is Hopfian, then $G$ is relatively Hopfian. This allows us to\nconstruct a reduced relatively Hopfian Abelian $p$-group $G$ with $p^{\\omega}G$\nan infinite elementary group such that $G$ is {\\bf not} Hopfian. In contrast,\nfor reduced torsion-free groups, we establish that the relative and ordinary\nHopficity are equivalent. Moreover, the mixed case is explored as well, showing\nthat the structure of both relatively and weakly Hopfian groups can be quite\ncomplicated.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Generalizations of Hopfian Abelian Groupa\",\"authors\":\"Andrey R. Chekhlov, Peter V. Danchev, Brendan Goldsmith, Patrick W. Keef\",\"doi\":\"arxiv-2408.01277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper targets to generalize the notion of Hopfian groups in the\\ncommutative case by defining the so-called {\\\\bf relatively Hopfian groups} and\\n{\\\\bf weakly Hopfian groups}, and establishing some their crucial properties and\\ncharacterizations. Specifically, we prove that for a reduced Abelian $p$-group\\n$G$ such that $p^{\\\\omega}G$ is Hopfian (in particular, is finite), the notions\\nof relative Hopficity and ordinary Hopficity do coincide. We also show that if\\n$G$ is a reduced Abelian $p$-group such that $p^{\\\\omega}G$ is bounded and\\n$G/p^{\\\\omega}G$ is Hopfian, then $G$ is relatively Hopfian. This allows us to\\nconstruct a reduced relatively Hopfian Abelian $p$-group $G$ with $p^{\\\\omega}G$\\nan infinite elementary group such that $G$ is {\\\\bf not} Hopfian. In contrast,\\nfor reduced torsion-free groups, we establish that the relative and ordinary\\nHopficity are equivalent. Moreover, the mixed case is explored as well, showing\\nthat the structure of both relatively and weakly Hopfian groups can be quite\\ncomplicated.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过定义所谓的{/bf relative Hopfian groups}和{/bf weakly Hopfian groups}来概括交换情形下的霍普菲恩群的概念,并建立它们的一些关键性质和特征。具体地说,我们证明了对于一个还原的阿贝尔 $p$ 群$G$,使得$p^{\omega}G$ 是霍普菲恩群(尤其是有限群),相对霍普菲恩性和普通霍普菲恩性的概念确实是重合的。我们还证明,如果$G$是一个还原的阿贝尔$p$群,且$p^{\omega}G$是有界的,并且$G/p^{\omega}G$是霍普非性的,那么$G$就是相对霍普非性的。这样,我们就可以构造一个有$p^{\omega}G$为无限初等群的还原的相对霍普非阿贝尔$p$群$G$,使得$G$是{\bf not} 霍普非的。相反,对于还原的无扭群,我们确定相对合性和普通合性是等价的。此外,我们还探讨了混合情况,表明相对和弱Hopfian群的结构都可能是非常复杂的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Generalizations of Hopfian Abelian Groupa
This paper targets to generalize the notion of Hopfian groups in the commutative case by defining the so-called {\bf relatively Hopfian groups} and {\bf weakly Hopfian groups}, and establishing some their crucial properties and characterizations. Specifically, we prove that for a reduced Abelian $p$-group $G$ such that $p^{\omega}G$ is Hopfian (in particular, is finite), the notions of relative Hopficity and ordinary Hopficity do coincide. We also show that if $G$ is a reduced Abelian $p$-group such that $p^{\omega}G$ is bounded and $G/p^{\omega}G$ is Hopfian, then $G$ is relatively Hopfian. This allows us to construct a reduced relatively Hopfian Abelian $p$-group $G$ with $p^{\omega}G$ an infinite elementary group such that $G$ is {\bf not} Hopfian. In contrast, for reduced torsion-free groups, we establish that the relative and ordinary Hopficity are equivalent. Moreover, the mixed case is explored as well, showing that the structure of both relatively and weakly Hopfian groups can be quite complicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信