{"title":"从多项式环的理想成员问题到元胞群的 Dehn 函数","authors":"Wenhao Wang","doi":"arxiv-2408.01518","DOIUrl":null,"url":null,"abstract":"The ideal membership problem asks whether an element in the ring belongs to\nthe given ideal. In this paper, we propose a function that reflecting the\ncomplexity of the ideal membership problem in the ring of Laurent polynomials\nwith integer coefficients. We also connect the complexity function we define to\nthe Dehn function of a metabelian group, in the hope of constructing a\nmetabelian group with superexponential Dehn function.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Ideal Membership Problem for polynomial rings to Dehn Functions of Metabelian Groups\",\"authors\":\"Wenhao Wang\",\"doi\":\"arxiv-2408.01518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ideal membership problem asks whether an element in the ring belongs to\\nthe given ideal. In this paper, we propose a function that reflecting the\\ncomplexity of the ideal membership problem in the ring of Laurent polynomials\\nwith integer coefficients. We also connect the complexity function we define to\\nthe Dehn function of a metabelian group, in the hope of constructing a\\nmetabelian group with superexponential Dehn function.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Ideal Membership Problem for polynomial rings to Dehn Functions of Metabelian Groups
The ideal membership problem asks whether an element in the ring belongs to
the given ideal. In this paper, we propose a function that reflecting the
complexity of the ideal membership problem in the ring of Laurent polynomials
with integer coefficients. We also connect the complexity function we define to
the Dehn function of a metabelian group, in the hope of constructing a
metabelian group with superexponential Dehn function.