{"title":"局部紧凑群的振型和余集空间","authors":"Linus Kramer, Raquel Murat García","doi":"arxiv-2408.03843","DOIUrl":null,"url":null,"abstract":"Let $G$ be a topological group and let $K,L\\subseteq G$ be closed subgroups,\nwith $K\\subseteq L$. We prove that if $L$ is a locally compact pro-Lie group, then the map\n$q:G/K\\to G/L$ is a fibration. As an application of this, we obtain two older\nresults by Skljarenko, Madison and Mostert.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibrations and coset spaces for locally compact groups\",\"authors\":\"Linus Kramer, Raquel Murat García\",\"doi\":\"arxiv-2408.03843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a topological group and let $K,L\\\\subseteq G$ be closed subgroups,\\nwith $K\\\\subseteq L$. We prove that if $L$ is a locally compact pro-Lie group, then the map\\n$q:G/K\\\\to G/L$ is a fibration. As an application of this, we obtain two older\\nresults by Skljarenko, Madison and Mostert.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fibrations and coset spaces for locally compact groups
Let $G$ be a topological group and let $K,L\subseteq G$ be closed subgroups,
with $K\subseteq L$. We prove that if $L$ is a locally compact pro-Lie group, then the map
$q:G/K\to G/L$ is a fibration. As an application of this, we obtain two older
results by Skljarenko, Madison and Mostert.