正交和定向法诺平面、K_7$ 的三角嵌入以及弗罗贝纽斯群 $F_{21}$ 的几何表征

Simone Costa, Marco Pavone
{"title":"正交和定向法诺平面、K_7$ 的三角嵌入以及弗罗贝纽斯群 $F_{21}$ 的几何表征","authors":"Simone Costa, Marco Pavone","doi":"arxiv-2408.03743","DOIUrl":null,"url":null,"abstract":"In this paper we present some geometrical representations of the Frobenius\ngroup of order $21$ (henceforth, $F_{21}$). The main focus is on investigating\nthe group of common automorphisms of two orthogonal Fano planes and the\nautomorphism group of a suitably oriented Fano plane. We show that both groups\nare isomorphic to $F_{21},$ independently of the choice of the two orthogonal\nFano planes and of the choice of the orientation. We show, moreover, that any triangular embedding of the complete graph $K_7$\ninto a surface is isomorphic to the classical toroidal biembedding and hence is\nface $2$-colorable, with the two color classes defining a pair of orthogonal\nFano planes. As a consequence, we show that, for any triangular embedding of\n$K_7$ into a surface, the group of the automorphisms that preserve the color\nclasses is the Frobenius group of order $21.$ This way we provide three geometrical representations of $F_{21}$. Also, we\napply the representation in terms of two orthogonal Fano planes to give an\nalternative proof that $F_{21}$ is the automorphism group of the Kirkman triple\nsystem of order $15$ that is usually denoted as #61.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal and oriented Fano planes, triangular embeddings of $K_7,$ and geometrical representations of the Frobenius group $F_{21}$\",\"authors\":\"Simone Costa, Marco Pavone\",\"doi\":\"arxiv-2408.03743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present some geometrical representations of the Frobenius\\ngroup of order $21$ (henceforth, $F_{21}$). The main focus is on investigating\\nthe group of common automorphisms of two orthogonal Fano planes and the\\nautomorphism group of a suitably oriented Fano plane. We show that both groups\\nare isomorphic to $F_{21},$ independently of the choice of the two orthogonal\\nFano planes and of the choice of the orientation. We show, moreover, that any triangular embedding of the complete graph $K_7$\\ninto a surface is isomorphic to the classical toroidal biembedding and hence is\\nface $2$-colorable, with the two color classes defining a pair of orthogonal\\nFano planes. As a consequence, we show that, for any triangular embedding of\\n$K_7$ into a surface, the group of the automorphisms that preserve the color\\nclasses is the Frobenius group of order $21.$ This way we provide three geometrical representations of $F_{21}$. Also, we\\napply the representation in terms of two orthogonal Fano planes to give an\\nalternative proof that $F_{21}$ is the automorphism group of the Kirkman triple\\nsystem of order $15$ that is usually denoted as #61.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了阶数为 $21$(以下简称 $F_{21}$)的弗罗贝纽斯群的一些几何表示。主要重点是研究两个正交法诺平面的共自变群和一个适当取向的法诺平面的自变群。我们证明这两个群都与 $F_{21}$ 同构,与两个正交法诺平面的选择和取向的选择无关。此外,我们还证明,任何将完整图 $K_7$ 嵌入曲面的三角形嵌入都与经典的环状双嵌入同构,因此是曲面 2$ 色的,两个色类定义了一对正交的法诺平面。因此,我们证明,对于任何将 $K_7$ 嵌入曲面的三角形,保持色类的自变量群是阶数为 $21 的弗罗贝尼斯群。此外,我们还利用两个正交法诺平面的表示,给出了$F_{21}$ 是阶为 $15$(通常表示为 #61)的柯克曼三元组的自变群的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal and oriented Fano planes, triangular embeddings of $K_7,$ and geometrical representations of the Frobenius group $F_{21}$
In this paper we present some geometrical representations of the Frobenius group of order $21$ (henceforth, $F_{21}$). The main focus is on investigating the group of common automorphisms of two orthogonal Fano planes and the automorphism group of a suitably oriented Fano plane. We show that both groups are isomorphic to $F_{21},$ independently of the choice of the two orthogonal Fano planes and of the choice of the orientation. We show, moreover, that any triangular embedding of the complete graph $K_7$ into a surface is isomorphic to the classical toroidal biembedding and hence is face $2$-colorable, with the two color classes defining a pair of orthogonal Fano planes. As a consequence, we show that, for any triangular embedding of $K_7$ into a surface, the group of the automorphisms that preserve the color classes is the Frobenius group of order $21.$ This way we provide three geometrical representations of $F_{21}$. Also, we apply the representation in terms of two orthogonal Fano planes to give an alternative proof that $F_{21}$ is the automorphism group of the Kirkman triple system of order $15$ that is usually denoted as #61.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信