某些有限非英格尔群的共英格尔图

Peter J. Cameron, Rishabh Chakraborty, Rajat Kanti Nath, Deiborlang Nongsiang
{"title":"某些有限非英格尔群的共英格尔图","authors":"Peter J. Cameron, Rishabh Chakraborty, Rajat Kanti Nath, Deiborlang Nongsiang","doi":"arxiv-2408.03879","DOIUrl":null,"url":null,"abstract":"Let $G$ be a group. Associate a graph $\\mathcal{E}_G$ (called the co-Engel\ngraph of $G$) with $G$ whose vertex set is $G$ and two distinct vertices $x$\nand $y$ are adjacent if $[x, {}_k y] \\neq 1$ and $[y, {}_k x] \\neq 1$ for all\npositive integer $k$. This graph, under the name ``Engel graph'', was\nintroduced by Abdollahi. Let $L(G)$ be the set of all left Engel elements of\n$G$. In this paper, we realize the induced subgraph of co-Engel graphs of\ncertain finite non-Engel groups $G$ induced by $G \\setminus L(G)$. We write\n$\\mathcal{E}^-(G)$ to denote the subgraph of $\\mathcal{E}_G$ induced by $G\n\\setminus L(G)$. We also compute genus, various spectra, energies and Zagreb\nindices of $\\mathcal{E}^-(G)$ for those groups. As a consequence, we determine\n(up to isomorphism) all finite non-Engel group $G$ such that the clique number\nis at most $4$ and $\\mathcal{E}^-$ is toroidal or projective. Further, we show\nthat $\\coeng{G}$ is super integral and satisfies the E-LE conjecture and the\nHansen--Vuki{\\v{c}}evi{\\'c} conjecture for the groups considered in this paper.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Engel graphs of certain finite non-Engel groups\",\"authors\":\"Peter J. Cameron, Rishabh Chakraborty, Rajat Kanti Nath, Deiborlang Nongsiang\",\"doi\":\"arxiv-2408.03879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a group. Associate a graph $\\\\mathcal{E}_G$ (called the co-Engel\\ngraph of $G$) with $G$ whose vertex set is $G$ and two distinct vertices $x$\\nand $y$ are adjacent if $[x, {}_k y] \\\\neq 1$ and $[y, {}_k x] \\\\neq 1$ for all\\npositive integer $k$. This graph, under the name ``Engel graph'', was\\nintroduced by Abdollahi. Let $L(G)$ be the set of all left Engel elements of\\n$G$. In this paper, we realize the induced subgraph of co-Engel graphs of\\ncertain finite non-Engel groups $G$ induced by $G \\\\setminus L(G)$. We write\\n$\\\\mathcal{E}^-(G)$ to denote the subgraph of $\\\\mathcal{E}_G$ induced by $G\\n\\\\setminus L(G)$. We also compute genus, various spectra, energies and Zagreb\\nindices of $\\\\mathcal{E}^-(G)$ for those groups. As a consequence, we determine\\n(up to isomorphism) all finite non-Engel group $G$ such that the clique number\\nis at most $4$ and $\\\\mathcal{E}^-$ is toroidal or projective. Further, we show\\nthat $\\\\coeng{G}$ is super integral and satisfies the E-LE conjecture and the\\nHansen--Vuki{\\\\v{c}}evi{\\\\'c} conjecture for the groups considered in this paper.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $G$ 是一个群。用 $G$ 关联一个图 $\mathcal{E}_G$(称为 $G$ 的共恩格尔图),该图的顶点集为 $G$,且对于所有正整数 $k$ 而言,如果 $[x, {}_k y] \neq 1$ 和 $[y, {}_k x] \neq 1$,则两个不同的顶点 $x$ 和 $y$ 相邻。这种图的名称为 "恩格尔图",由阿卜杜拉希提出。让 $L(G)$ 成为 $G$ 所有左恩格尔元素的集合。在本文中,我们将实现由 $G setminus L(G)$ 所诱导的某些有限非恩格尔群 $G$ 的共恩格尔图的诱导子图。我们用$mathcal{E}^-(G)$来表示由$Gsetminus L(G)$诱导的$\mathcal{E}_G$的子图。我们还计算了这些群的属、各种谱、能量和 $\mathcal{E}^-(G)$ 的 Zagrebindices。因此,我们确定了(直到同构)所有有限非英格尔群 $G$,它们的簇数至多为 $4$,并且 $\mathcal{E}^-$ 是环状或投影的。此外,我们还证明 $\coeng{G}$ 是超积分的,并且满足本文所考虑的群的 E-LE 猜想和 Hansen--Vuki\{v{c}}evi{c} 猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Engel graphs of certain finite non-Engel groups
Let $G$ be a group. Associate a graph $\mathcal{E}_G$ (called the co-Engel graph of $G$) with $G$ whose vertex set is $G$ and two distinct vertices $x$ and $y$ are adjacent if $[x, {}_k y] \neq 1$ and $[y, {}_k x] \neq 1$ for all positive integer $k$. This graph, under the name ``Engel graph'', was introduced by Abdollahi. Let $L(G)$ be the set of all left Engel elements of $G$. In this paper, we realize the induced subgraph of co-Engel graphs of certain finite non-Engel groups $G$ induced by $G \setminus L(G)$. We write $\mathcal{E}^-(G)$ to denote the subgraph of $\mathcal{E}_G$ induced by $G \setminus L(G)$. We also compute genus, various spectra, energies and Zagreb indices of $\mathcal{E}^-(G)$ for those groups. As a consequence, we determine (up to isomorphism) all finite non-Engel group $G$ such that the clique number is at most $4$ and $\mathcal{E}^-$ is toroidal or projective. Further, we show that $\coeng{G}$ is super integral and satisfies the E-LE conjecture and the Hansen--Vuki{\v{c}}evi{\'c} conjecture for the groups considered in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信