某些特定最大不变子群为零或所有非零最大不变子群为正的有限群

Jiangtao Shi, Fanjie Xu
{"title":"某些特定最大不变子群为零或所有非零最大不变子群为正的有限群","authors":"Jiangtao Shi, Fanjie Xu","doi":"arxiv-2408.01249","DOIUrl":null,"url":null,"abstract":"Let $A$ and $G$ be finite groups such that $A$ acts coprimely on $G$ by\nautomorphisms. We provide a complete classification of a finite group $G$ in\nwhich every maximal $A$-invariant subgroup containing the normalizer of some\n$A$-invariant Sylow subgroup is nilpotent. Moreover, we show that both the\nhypothesis that every maximal $A$-invariant subgroup of $G$ containing the\nnormalizer of some $A$-invariant Sylow subgroup is nilpotent and the hypothesis\nthat every non-nilpotent maximal $A$-invariant subgroup of $G$ is normal are\nequivalent.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite groups with some particular maximal invariant subgroups being nilpotent or all non-nilpotent maximal invariant subgroups being normal\",\"authors\":\"Jiangtao Shi, Fanjie Xu\",\"doi\":\"arxiv-2408.01249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ and $G$ be finite groups such that $A$ acts coprimely on $G$ by\\nautomorphisms. We provide a complete classification of a finite group $G$ in\\nwhich every maximal $A$-invariant subgroup containing the normalizer of some\\n$A$-invariant Sylow subgroup is nilpotent. Moreover, we show that both the\\nhypothesis that every maximal $A$-invariant subgroup of $G$ containing the\\nnormalizer of some $A$-invariant Sylow subgroup is nilpotent and the hypothesis\\nthat every non-nilpotent maximal $A$-invariant subgroup of $G$ is normal are\\nequivalent.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $A$ 和 $G$ 都是有限群,并且 $A$ 通过同构共元作用于 $G$。我们提供了有限群 $G$ 的完整分类,在这个有限群中,每个最大 $A$ 不变子群都包含某个 $A$ 不变 Sylow 子群的规范化子群。此外,我们还证明了"$G$ 的每个最大 $A$ 不变子群都包含某个 $A$ 不变 Sylow 子群的归一化子是零能的 "这一假设与"$G$ 的每个非零能最大 $A$ 不变子群都是正常的 "这一假设是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups with some particular maximal invariant subgroups being nilpotent or all non-nilpotent maximal invariant subgroups being normal
Let $A$ and $G$ be finite groups such that $A$ acts coprimely on $G$ by automorphisms. We provide a complete classification of a finite group $G$ in which every maximal $A$-invariant subgroup containing the normalizer of some $A$-invariant Sylow subgroup is nilpotent. Moreover, we show that both the hypothesis that every maximal $A$-invariant subgroup of $G$ containing the normalizer of some $A$-invariant Sylow subgroup is nilpotent and the hypothesis that every non-nilpotent maximal $A$-invariant subgroup of $G$ is normal are equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信