具有紧凑边界的光滑度量空间上非线性热型方程的若干梯度估计

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Abimbola Abolarinwa
{"title":"具有紧凑边界的光滑度量空间上非线性热型方程的若干梯度估计","authors":"Abimbola Abolarinwa","doi":"10.1007/s44198-024-00220-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove some Hamilton type and Li–Yau type gradient estimates on positive solutions to generalized nonlinear parabolic equations on smooth metric measure space with compact boundary. The geometry of the space in terms of lower bounds on the weighted Bakry–Émery Ricci curvature tensor and weighted mean curvature of the boundary are key in proving generalized local and global gradient estimates. Various applications of these gradient estimates in terms of parabolic Harnack inequalities and Liouville type results are discussed. Further consequences to some specific models informed by the nature of the nonlinearities are highlighted.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Gradient Estimates for Nonlinear Heat-Type Equations on Smooth Metric Measure Spaces with Compact Boundary\",\"authors\":\"Abimbola Abolarinwa\",\"doi\":\"10.1007/s44198-024-00220-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove some Hamilton type and Li–Yau type gradient estimates on positive solutions to generalized nonlinear parabolic equations on smooth metric measure space with compact boundary. The geometry of the space in terms of lower bounds on the weighted Bakry–Émery Ricci curvature tensor and weighted mean curvature of the boundary are key in proving generalized local and global gradient estimates. Various applications of these gradient estimates in terms of parabolic Harnack inequalities and Liouville type results are discussed. Further consequences to some specific models informed by the nature of the nonlinearities are highlighted.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00220-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00220-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了具有紧凑边界的光滑度量空间上广义非线性抛物方程正解的一些汉密尔顿型和李-尤型梯度估计。以加权 Bakry-Émery Ricci 曲率张量和边界加权平均曲率的下界表示的空间几何是证明广义局部和全局梯度估计的关键。讨论了这些梯度估计在抛物线哈纳克不等式和柳维尔类型结果方面的各种应用。此外,还强调了非线性性质对某些特定模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Gradient Estimates for Nonlinear Heat-Type Equations on Smooth Metric Measure Spaces with Compact Boundary

In this paper we prove some Hamilton type and Li–Yau type gradient estimates on positive solutions to generalized nonlinear parabolic equations on smooth metric measure space with compact boundary. The geometry of the space in terms of lower bounds on the weighted Bakry–Émery Ricci curvature tensor and weighted mean curvature of the boundary are key in proving generalized local and global gradient estimates. Various applications of these gradient estimates in terms of parabolic Harnack inequalities and Liouville type results are discussed. Further consequences to some specific models informed by the nature of the nonlinearities are highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信