MGRCFusion:基于多尺度群残差卷积的红外和可见光图像融合网络

Pan Zhu, Yufei Yin, Xinglin Zhou
{"title":"MGRCFusion:基于多尺度群残差卷积的红外和可见光图像融合网络","authors":"Pan Zhu, Yufei Yin, Xinglin Zhou","doi":"10.1016/j.optlastec.2024.111576","DOIUrl":null,"url":null,"abstract":"The purpose of fusing infrared and visible images is to obtain an informative image that contains bright thermal targets and rich visible texture details. However, the existing deep learning-based algorithms generally neglect finer deep-level multi-scale features, and only the last layer of features is injected into the feature fusion strategy. To this end, we propose an optimized network model for deeper-level multi-scale features extraction based on multi-scale group residual convolution. Meanwhile, a dense connection module is designed to adequately integrate these multi-scale feature information. We contrast our method with advanced deep learning-based algorithms on multiple datasets. Extensive qualitative and quantitative experiments reveal that our method surpasses the existing fusion methods. Furthermore, ablation experiments illustrate the excellence of the multi-scale group residual convolution module for infrared and visible image fusion.","PeriodicalId":19597,"journal":{"name":"Optics & Laser Technology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGRCFusion: An infrared and visible image fusion network based on multi-scale group residual convolution\",\"authors\":\"Pan Zhu, Yufei Yin, Xinglin Zhou\",\"doi\":\"10.1016/j.optlastec.2024.111576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of fusing infrared and visible images is to obtain an informative image that contains bright thermal targets and rich visible texture details. However, the existing deep learning-based algorithms generally neglect finer deep-level multi-scale features, and only the last layer of features is injected into the feature fusion strategy. To this end, we propose an optimized network model for deeper-level multi-scale features extraction based on multi-scale group residual convolution. Meanwhile, a dense connection module is designed to adequately integrate these multi-scale feature information. We contrast our method with advanced deep learning-based algorithms on multiple datasets. Extensive qualitative and quantitative experiments reveal that our method surpasses the existing fusion methods. Furthermore, ablation experiments illustrate the excellence of the multi-scale group residual convolution module for infrared and visible image fusion.\",\"PeriodicalId\":19597,\"journal\":{\"name\":\"Optics & Laser Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics & Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.optlastec.2024.111576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics & Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.optlastec.2024.111576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

融合红外图像和可见光图像的目的是获得包含明亮热目标和丰富可见光纹理细节的信息图像。然而,现有的基于深度学习的算法普遍忽视了更精细的深层次多尺度特征,仅将最后一层特征注入特征融合策略中。为此,我们提出了一种基于多尺度组残差卷积的深层多尺度特征提取优化网络模型。同时,我们还设计了一个密集连接模块,以充分整合这些多尺度特征信息。我们将我们的方法与基于深度学习的先进算法在多个数据集上进行了对比。广泛的定性和定量实验表明,我们的方法超越了现有的融合方法。此外,消融实验说明了多尺度群残差卷积模块在红外和可见光图像融合方面的卓越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MGRCFusion: An infrared and visible image fusion network based on multi-scale group residual convolution
The purpose of fusing infrared and visible images is to obtain an informative image that contains bright thermal targets and rich visible texture details. However, the existing deep learning-based algorithms generally neglect finer deep-level multi-scale features, and only the last layer of features is injected into the feature fusion strategy. To this end, we propose an optimized network model for deeper-level multi-scale features extraction based on multi-scale group residual convolution. Meanwhile, a dense connection module is designed to adequately integrate these multi-scale feature information. We contrast our method with advanced deep learning-based algorithms on multiple datasets. Extensive qualitative and quantitative experiments reveal that our method surpasses the existing fusion methods. Furthermore, ablation experiments illustrate the excellence of the multi-scale group residual convolution module for infrared and visible image fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信