Adrian Ricardo Archilla, Phillip S.K. Ooi, Saroj Pathak
{"title":"考虑增量静态和动态载荷的弹性模量参数的非线性解释","authors":"Adrian Ricardo Archilla, Phillip S.K. Ooi, Saroj Pathak","doi":"10.1177/03611981241257508","DOIUrl":null,"url":null,"abstract":"The resilient modulus ( M<jats:sub>r</jats:sub>) is typically interpreted as the average of the last five secant slopes of the cyclic stress-axial resilient strain curve from repeated loading triaxial tests. It is not uncommon to then fit mathematical models to the secant M<jats:sub>r</jats:sub> to derive model parameters ( K<jats:sub>i</jats:sub>, more commonly known as K<jats:sub>1</jats:sub>, K<jats:sub>2</jats:sub>, and K<jats:sub>3</jats:sub>) that are then used in pavement analysis. Some engineers also backcalculate K<jats:sub>i</jats:sub> from a falling weight deflectometer test. Many researchers use an incremental loading procedure to analyze pavements. When doing so, it is important to consider the nonlinear load-deformation behavior, which is considered only coarsely in the secant slope approach. Some incremental loading procedures assume the geomaterial to be nonlinear elastic while a dynamic finite element analysis typically assumes the geomaterials to be nonlinear and viscoelastic, that is, having springs and dashpots. With the latter, additional damping parameters to represent the viscoelastic effects are required. This paper compares K<jats:sub>i</jats:sub> parameters estimated using linear regression on a log transformation of the Mechanistic–Empirical Pavement Design Guide (MEPDG) M<jats:sub>r</jats:sub> model, which is a non-viscoelastic secant M<jats:sub>r</jats:sub> approach, with those obtained using nonlinear regression of the time dependent deformations when interpreting the M<jats:sub>r</jats:sub> test using incremental loading of a: 1) nonlinear elastic geomaterial; and 2) nonlinear viscoelastic geomaterial with inertial mass. The results show that the estimated K<jats:sub>i</jats:sub> parameters governing the geomaterial nonlinearity are substantially affected by the estimation method and that the second alternative approach can model hysteresis well.","PeriodicalId":517391,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Interpretation of Resilient Modulus Parameters Considering Incremental Static and Dynamic Loading\",\"authors\":\"Adrian Ricardo Archilla, Phillip S.K. Ooi, Saroj Pathak\",\"doi\":\"10.1177/03611981241257508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The resilient modulus ( M<jats:sub>r</jats:sub>) is typically interpreted as the average of the last five secant slopes of the cyclic stress-axial resilient strain curve from repeated loading triaxial tests. It is not uncommon to then fit mathematical models to the secant M<jats:sub>r</jats:sub> to derive model parameters ( K<jats:sub>i</jats:sub>, more commonly known as K<jats:sub>1</jats:sub>, K<jats:sub>2</jats:sub>, and K<jats:sub>3</jats:sub>) that are then used in pavement analysis. Some engineers also backcalculate K<jats:sub>i</jats:sub> from a falling weight deflectometer test. Many researchers use an incremental loading procedure to analyze pavements. When doing so, it is important to consider the nonlinear load-deformation behavior, which is considered only coarsely in the secant slope approach. Some incremental loading procedures assume the geomaterial to be nonlinear elastic while a dynamic finite element analysis typically assumes the geomaterials to be nonlinear and viscoelastic, that is, having springs and dashpots. With the latter, additional damping parameters to represent the viscoelastic effects are required. This paper compares K<jats:sub>i</jats:sub> parameters estimated using linear regression on a log transformation of the Mechanistic–Empirical Pavement Design Guide (MEPDG) M<jats:sub>r</jats:sub> model, which is a non-viscoelastic secant M<jats:sub>r</jats:sub> approach, with those obtained using nonlinear regression of the time dependent deformations when interpreting the M<jats:sub>r</jats:sub> test using incremental loading of a: 1) nonlinear elastic geomaterial; and 2) nonlinear viscoelastic geomaterial with inertial mass. The results show that the estimated K<jats:sub>i</jats:sub> parameters governing the geomaterial nonlinearity are substantially affected by the estimation method and that the second alternative approach can model hysteresis well.\",\"PeriodicalId\":517391,\"journal\":{\"name\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Record: Journal of the Transportation Research Board\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03611981241257508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981241257508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
回弹模量(Mr)通常被解释为重复加载三轴试验中循环应力-轴向回弹应变曲线最后五个正割斜率的平均值。通常情况下,将数学模型拟合到 secant Mr 上,得出模型参数(Ki,通常称为 K1、K2 和 K3),然后用于路面分析。有些工程师还会通过落重挠度仪测试反算 Ki。许多研究人员使用增量加载程序来分析路面。在进行分析时,必须考虑非线性荷载-变形行为,而这种行为在秒坡法中只得到了粗略的考虑。一些增量加载程序假定土工材料为非线性弹性材料,而动态有限元分析通常假定土工材料为非线性粘弹性材料,即具有弹簧和冲刺点。对于后者,需要额外的阻尼参数来表示粘弹性效应。本文比较了使用对数变换线性回归估算的力学-经验路面设计指南(MEPDG)Mr 模型的 Ki 参数(这是一种非粘弹性的秒速快三精准人工下注计划方法)与使用时间相关变形的非线性回归估算的 Ki 参数,后者是在使用增量加载对以下土质材料进行 Mr 试验时获得的:1)非线性弹性土质材料;2)粘弹性土质材料;3)非线性弹性土质材料;4)非线性弹性土质材料:1) 非线性弹性土工材料;以及 2) 具有惯性质量的非线性粘弹性土工材料。结果表明,估算土工材料非线性的 Ki 参数受估算方法的影响很大,而第二种替代方法可以很好地模拟滞后现象。
Nonlinear Interpretation of Resilient Modulus Parameters Considering Incremental Static and Dynamic Loading
The resilient modulus ( Mr) is typically interpreted as the average of the last five secant slopes of the cyclic stress-axial resilient strain curve from repeated loading triaxial tests. It is not uncommon to then fit mathematical models to the secant Mr to derive model parameters ( Ki, more commonly known as K1, K2, and K3) that are then used in pavement analysis. Some engineers also backcalculate Ki from a falling weight deflectometer test. Many researchers use an incremental loading procedure to analyze pavements. When doing so, it is important to consider the nonlinear load-deformation behavior, which is considered only coarsely in the secant slope approach. Some incremental loading procedures assume the geomaterial to be nonlinear elastic while a dynamic finite element analysis typically assumes the geomaterials to be nonlinear and viscoelastic, that is, having springs and dashpots. With the latter, additional damping parameters to represent the viscoelastic effects are required. This paper compares Ki parameters estimated using linear regression on a log transformation of the Mechanistic–Empirical Pavement Design Guide (MEPDG) Mr model, which is a non-viscoelastic secant Mr approach, with those obtained using nonlinear regression of the time dependent deformations when interpreting the Mr test using incremental loading of a: 1) nonlinear elastic geomaterial; and 2) nonlinear viscoelastic geomaterial with inertial mass. The results show that the estimated Ki parameters governing the geomaterial nonlinearity are substantially affected by the estimation method and that the second alternative approach can model hysteresis well.