受 Matroid 约束的次模态最大化的确定性算法和更快算法

Niv Buchbinder, Moran Feldman
{"title":"受 Matroid 约束的次模态最大化的确定性算法和更快算法","authors":"Niv Buchbinder, Moran Feldman","doi":"arxiv-2408.03583","DOIUrl":null,"url":null,"abstract":"We study the problem of maximizing a monotone submodular function subject to\na matroid constraint, and present for it a deterministic non-oblivious local\nsearch algorithm that has an approximation guarantee of $1 - 1/e - \\varepsilon$\n(for any $\\varepsilon> 0$) and query complexity of $\\tilde{O}_\\varepsilon(nr)$,\nwhere $n$ is the size of the ground set and $r$ is the rank of the matroid. Our\nalgorithm vastly improves over the previous state-of-the-art\n$0.5008$-approximation deterministic algorithm, and in fact, shows that there\nis no separation between the approximation guarantees that can be obtained by\ndeterministic and randomized algorithms for the problem considered. The query\ncomplexity of our algorithm can be improved to $\\tilde{O}_\\varepsilon(n +\nr\\sqrt{n})$ using randomization, which is nearly-linear for $r = O(\\sqrt{n})$,\nand is always at least as good as the previous state-of-the-art algorithms.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic Algorithm and Faster Algorithm for Submodular Maximization subject to a Matroid Constraint\",\"authors\":\"Niv Buchbinder, Moran Feldman\",\"doi\":\"arxiv-2408.03583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of maximizing a monotone submodular function subject to\\na matroid constraint, and present for it a deterministic non-oblivious local\\nsearch algorithm that has an approximation guarantee of $1 - 1/e - \\\\varepsilon$\\n(for any $\\\\varepsilon> 0$) and query complexity of $\\\\tilde{O}_\\\\varepsilon(nr)$,\\nwhere $n$ is the size of the ground set and $r$ is the rank of the matroid. Our\\nalgorithm vastly improves over the previous state-of-the-art\\n$0.5008$-approximation deterministic algorithm, and in fact, shows that there\\nis no separation between the approximation guarantees that can be obtained by\\ndeterministic and randomized algorithms for the problem considered. The query\\ncomplexity of our algorithm can be improved to $\\\\tilde{O}_\\\\varepsilon(n +\\nr\\\\sqrt{n})$ using randomization, which is nearly-linear for $r = O(\\\\sqrt{n})$,\\nand is always at least as good as the previous state-of-the-art algorithms.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在矩阵约束条件下最大化单调亚模态函数的问题,并提出了一种确定性非盲目局部搜索算法,该算法的近似保证为 1 - 1/e - \varepsilon$(对于任意 $\varepsilon>0$),查询复杂度为 $\tilde{O}_\varepsilon(nr)$,其中 $n$ 是地面集的大小,$r$ 是矩阵的秩。Oural算法大大改进了之前最先进的0.5008美元近似确定性算法,事实上,该算法表明,对于所考虑的问题,确定性算法和随机算法所能获得的近似保证并不存在差异。我们算法的查询复杂度可以通过随机化提高到 $\tilde{O}_\varepsilon(n+r\sqrt{n})$,这对于 $r = O(\sqrt{n})$ 来说几乎是线性的,并且总是至少与之前最先进的算法一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deterministic Algorithm and Faster Algorithm for Submodular Maximization subject to a Matroid Constraint
We study the problem of maximizing a monotone submodular function subject to a matroid constraint, and present for it a deterministic non-oblivious local search algorithm that has an approximation guarantee of $1 - 1/e - \varepsilon$ (for any $\varepsilon> 0$) and query complexity of $\tilde{O}_\varepsilon(nr)$, where $n$ is the size of the ground set and $r$ is the rank of the matroid. Our algorithm vastly improves over the previous state-of-the-art $0.5008$-approximation deterministic algorithm, and in fact, shows that there is no separation between the approximation guarantees that can be obtained by deterministic and randomized algorithms for the problem considered. The query complexity of our algorithm can be improved to $\tilde{O}_\varepsilon(n + r\sqrt{n})$ using randomization, which is nearly-linear for $r = O(\sqrt{n})$, and is always at least as good as the previous state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信