{"title":"关于字符串中非等价参数化正方形的数量","authors":"Rikuya Hamai, Kazushi Taketsugu, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai","doi":"arxiv-2408.04920","DOIUrl":null,"url":null,"abstract":"A string $s$ is called a parameterized square when $s = xy$ for strings $x$,\n$y$ and $x$ and $y$ are parameterized equivalent. Kociumaka et al. showed the\nnumber of parameterized squares, which are non-equivalent in parameterized\nequivalence, in a string of length $n$ that contains $\\sigma$ distinct\ncharacters is at most $2 \\sigma! n$ [TCS 2016]. In this paper, we show that the\nmaximum number of non-equivalent parameterized squares is less than $\\sigma n$,\nwhich significantly improves the best-known upper bound by Kociumaka et al.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"370 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Number of Non-equivalent Parameterized Squares in a String\",\"authors\":\"Rikuya Hamai, Kazushi Taketsugu, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai\",\"doi\":\"arxiv-2408.04920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A string $s$ is called a parameterized square when $s = xy$ for strings $x$,\\n$y$ and $x$ and $y$ are parameterized equivalent. Kociumaka et al. showed the\\nnumber of parameterized squares, which are non-equivalent in parameterized\\nequivalence, in a string of length $n$ that contains $\\\\sigma$ distinct\\ncharacters is at most $2 \\\\sigma! n$ [TCS 2016]. In this paper, we show that the\\nmaximum number of non-equivalent parameterized squares is less than $\\\\sigma n$,\\nwhich significantly improves the best-known upper bound by Kociumaka et al.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"370 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Number of Non-equivalent Parameterized Squares in a String
A string $s$ is called a parameterized square when $s = xy$ for strings $x$,
$y$ and $x$ and $y$ are parameterized equivalent. Kociumaka et al. showed the
number of parameterized squares, which are non-equivalent in parameterized
equivalence, in a string of length $n$ that contains $\sigma$ distinct
characters is at most $2 \sigma! n$ [TCS 2016]. In this paper, we show that the
maximum number of non-equivalent parameterized squares is less than $\sigma n$,
which significantly improves the best-known upper bound by Kociumaka et al.