具有凹或几何凹非线性的闵科夫斯基-曲率方程的分岔曲线

IF 1.7 4区 数学 Q1 Mathematics
Kuo-Chih Hung
{"title":"具有凹或几何凹非线性的闵科夫斯基-曲率方程的分岔曲线","authors":"Kuo-Chih Hung","doi":"10.1186/s13661-024-01906-7","DOIUrl":null,"url":null,"abstract":"We study the bifurcation curve and exact multiplicity of positive solutions in the space $C^{2}\\left ( (-L,L)\\right ) \\cap C\\left ( [-L,L]\\right ) $ for the Minkowski-curvature equation $$ \\left \\{ \\textstyle\\begin{array}{l} -\\left ( \\dfrac{u^{\\prime }(x)}{\\sqrt{1-\\left ( {u^{\\prime }(x)}\\right ) ^{2}}}\\right ) ^{\\prime }=\\lambda f(u),\\text{\\ \\ }-L< x< L, \\\\ u(-L)=u(L)=0.\\end{array}\\displaystyle \\right . $$ where $\\lambda >0$ is a bifurcation parameter, $f\\in C[0,\\infty )\\cap C^{2}(0,\\infty )$ satisfies $f(u)>0$ for $u>0$ and f is either concave or geometrically concave on $(0,\\infty )$ . If f is a concave function, we prove that the bifurcation curve is monotone increasing on the $(\\lambda ,\\left \\Vert u\\right \\Vert _{\\infty })$ -plane. If f is a geometrically concave function, we prove that the bifurcation curve is either ⊂-shaped or monotone increasing on the $(\\lambda ,\\left \\Vert u\\right \\Vert _{\\infty })$ -plane under a mild condition. Some interesting applications are given.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation curve for the Minkowski-curvature equation with concave or geometrically concave nonlinearity\",\"authors\":\"Kuo-Chih Hung\",\"doi\":\"10.1186/s13661-024-01906-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the bifurcation curve and exact multiplicity of positive solutions in the space $C^{2}\\\\left ( (-L,L)\\\\right ) \\\\cap C\\\\left ( [-L,L]\\\\right ) $ for the Minkowski-curvature equation $$ \\\\left \\\\{ \\\\textstyle\\\\begin{array}{l} -\\\\left ( \\\\dfrac{u^{\\\\prime }(x)}{\\\\sqrt{1-\\\\left ( {u^{\\\\prime }(x)}\\\\right ) ^{2}}}\\\\right ) ^{\\\\prime }=\\\\lambda f(u),\\\\text{\\\\ \\\\ }-L< x< L, \\\\\\\\ u(-L)=u(L)=0.\\\\end{array}\\\\displaystyle \\\\right . $$ where $\\\\lambda >0$ is a bifurcation parameter, $f\\\\in C[0,\\\\infty )\\\\cap C^{2}(0,\\\\infty )$ satisfies $f(u)>0$ for $u>0$ and f is either concave or geometrically concave on $(0,\\\\infty )$ . If f is a concave function, we prove that the bifurcation curve is monotone increasing on the $(\\\\lambda ,\\\\left \\\\Vert u\\\\right \\\\Vert _{\\\\infty })$ -plane. If f is a geometrically concave function, we prove that the bifurcation curve is either ⊂-shaped or monotone increasing on the $(\\\\lambda ,\\\\left \\\\Vert u\\\\right \\\\Vert _{\\\\infty })$ -plane under a mild condition. Some interesting applications are given.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01906-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01906-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了闵科夫斯基曲率方程 $$ C^{2}\left ( (-L,L)\right ) 空间中正解的分岔曲线和精确多重性。\cap C\left ( [-L,L]\right ) $ 用于闵科夫斯基曲率方程 $$ \left \{ \textstyle\begin{array}{l} -\left ( \dfrac{u^{\prime }(x)}{sqrt{1-\left ( {u^{\prime }(x)}\right )^{2}}}\right )^{{prime }=\lambda f(u),\text{\ }-L< x< L, \ u(-L)=u(L)=0.\end{array}\displaystyle \right .$$ 其中 $\lambda >0$ 是一个分岔参数,$f\in C[0,\infty )\cap C^{2}(0,\infty )$ 满足 $f(u)>0$ for $u>0$ 并且 f 在 $(0,\infty )$ 上要么是凹函数要么是几何凹函数。如果 f 是凹函数,我们证明分岔曲线在 $(\lambda ,\left \Vert u\right \Vert _\{infty })$ 平面上是单调递增的。如果 f 是一个几何凹函数,我们证明在一个温和的条件下,分岔曲线在 $(\lambda ,\left \Vert u\right \Vert _{\infty })$ - 平面上要么是 ⊂ 形的,要么是单调递增的。文中给出了一些有趣的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation curve for the Minkowski-curvature equation with concave or geometrically concave nonlinearity
We study the bifurcation curve and exact multiplicity of positive solutions in the space $C^{2}\left ( (-L,L)\right ) \cap C\left ( [-L,L]\right ) $ for the Minkowski-curvature equation $$ \left \{ \textstyle\begin{array}{l} -\left ( \dfrac{u^{\prime }(x)}{\sqrt{1-\left ( {u^{\prime }(x)}\right ) ^{2}}}\right ) ^{\prime }=\lambda f(u),\text{\ \ }-L< x< L, \\ u(-L)=u(L)=0.\end{array}\displaystyle \right . $$ where $\lambda >0$ is a bifurcation parameter, $f\in C[0,\infty )\cap C^{2}(0,\infty )$ satisfies $f(u)>0$ for $u>0$ and f is either concave or geometrically concave on $(0,\infty )$ . If f is a concave function, we prove that the bifurcation curve is monotone increasing on the $(\lambda ,\left \Vert u\right \Vert _{\infty })$ -plane. If f is a geometrically concave function, we prove that the bifurcation curve is either ⊂-shaped or monotone increasing on the $(\lambda ,\left \Vert u\right \Vert _{\infty })$ -plane under a mild condition. Some interesting applications are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信