Wan Yang, Enoma Omoregie, Aaron Olsen, Elizabeth A. Watts, Hilary Parton, Ellen Lee
{"title":"利用废水监测估计 SARS-CoV-2 粪便病毒散播模式并确定传播加剧的时间段","authors":"Wan Yang, Enoma Omoregie, Aaron Olsen, Elizabeth A. Watts, Hilary Parton, Ellen Lee","doi":"10.1101/2024.08.02.24311410","DOIUrl":null,"url":null,"abstract":"Background: Wastewater-based surveillance is an important tool for monitoring the COVID-19 pandemic. However, it remains challenging to translate wastewater SARS-CoV-2 viral load to infection number, due to unclear shedding patterns in wastewater and potential differences between variants. Objectives: We utilized comprehensive wastewater surveillance data and estimates of infection prevalence (i.e., the source of the viral shedding) available for New York City (NYC) to characterize SARS-CoV-2 fecal shedding pattern over multiple COVID-19 waves. Methods: We collected SARS-CoV-2 viral wastewater measurements in NYC during August 31, 2020 - August 29, 2023 (N = 3794 samples). Combining with estimates of infection prevalence (number of infectious individuals including those not detected as cases), we estimated the time-lag, duration, and per-infection fecal shedding rate for the ancestral/Iota, Delta, and Omicron variants, separately. We also developed a procedure to identify occasions with intensified transmission. Results: Models suggested fecal viral shedding likely starts around the same time as and lasts slightly longer than respiratory tract shedding. Estimated fecal viral shedding rate was highest during the ancestral/Iota variant wave, at 1.44 (95% CI: 1.35 - 1.53) billion RNA copies in wastewater per day per infection (measured by RT-qPCR), and decreased by ~20% and 50-60% during the Delta wave and Omicron period, respectively. We identified around 200 occasions during which the wastewater SARS-CoV-2 viral load exceeded the expected level in any of 14 sewersheds. These anomalies disproportionally occurred during late January, late April - early May, early August, and from late-November to late-December, with frequencies exceeding the expectation assuming random occurrence (P < 0.05; bootstrapping test). Discussion: These estimates may be useful in understanding changes in underlying infection rate and help quantify changes in COVID-19 transmission and severity over time. We have also demonstrated that wastewater surveillance data can support the identification of time periods with potentially intensified transmission.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Wastewater Surveillance to Estimate SARS-CoV-2 Fecal Viral Shedding Pattern and Identify Time Periods with Intensified Transmission\",\"authors\":\"Wan Yang, Enoma Omoregie, Aaron Olsen, Elizabeth A. Watts, Hilary Parton, Ellen Lee\",\"doi\":\"10.1101/2024.08.02.24311410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Wastewater-based surveillance is an important tool for monitoring the COVID-19 pandemic. However, it remains challenging to translate wastewater SARS-CoV-2 viral load to infection number, due to unclear shedding patterns in wastewater and potential differences between variants. Objectives: We utilized comprehensive wastewater surveillance data and estimates of infection prevalence (i.e., the source of the viral shedding) available for New York City (NYC) to characterize SARS-CoV-2 fecal shedding pattern over multiple COVID-19 waves. Methods: We collected SARS-CoV-2 viral wastewater measurements in NYC during August 31, 2020 - August 29, 2023 (N = 3794 samples). Combining with estimates of infection prevalence (number of infectious individuals including those not detected as cases), we estimated the time-lag, duration, and per-infection fecal shedding rate for the ancestral/Iota, Delta, and Omicron variants, separately. We also developed a procedure to identify occasions with intensified transmission. Results: Models suggested fecal viral shedding likely starts around the same time as and lasts slightly longer than respiratory tract shedding. Estimated fecal viral shedding rate was highest during the ancestral/Iota variant wave, at 1.44 (95% CI: 1.35 - 1.53) billion RNA copies in wastewater per day per infection (measured by RT-qPCR), and decreased by ~20% and 50-60% during the Delta wave and Omicron period, respectively. We identified around 200 occasions during which the wastewater SARS-CoV-2 viral load exceeded the expected level in any of 14 sewersheds. These anomalies disproportionally occurred during late January, late April - early May, early August, and from late-November to late-December, with frequencies exceeding the expectation assuming random occurrence (P < 0.05; bootstrapping test). Discussion: These estimates may be useful in understanding changes in underlying infection rate and help quantify changes in COVID-19 transmission and severity over time. We have also demonstrated that wastewater surveillance data can support the identification of time periods with potentially intensified transmission.\",\"PeriodicalId\":501071,\"journal\":{\"name\":\"medRxiv - Epidemiology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.02.24311410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.02.24311410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Use of Wastewater Surveillance to Estimate SARS-CoV-2 Fecal Viral Shedding Pattern and Identify Time Periods with Intensified Transmission
Background: Wastewater-based surveillance is an important tool for monitoring the COVID-19 pandemic. However, it remains challenging to translate wastewater SARS-CoV-2 viral load to infection number, due to unclear shedding patterns in wastewater and potential differences between variants. Objectives: We utilized comprehensive wastewater surveillance data and estimates of infection prevalence (i.e., the source of the viral shedding) available for New York City (NYC) to characterize SARS-CoV-2 fecal shedding pattern over multiple COVID-19 waves. Methods: We collected SARS-CoV-2 viral wastewater measurements in NYC during August 31, 2020 - August 29, 2023 (N = 3794 samples). Combining with estimates of infection prevalence (number of infectious individuals including those not detected as cases), we estimated the time-lag, duration, and per-infection fecal shedding rate for the ancestral/Iota, Delta, and Omicron variants, separately. We also developed a procedure to identify occasions with intensified transmission. Results: Models suggested fecal viral shedding likely starts around the same time as and lasts slightly longer than respiratory tract shedding. Estimated fecal viral shedding rate was highest during the ancestral/Iota variant wave, at 1.44 (95% CI: 1.35 - 1.53) billion RNA copies in wastewater per day per infection (measured by RT-qPCR), and decreased by ~20% and 50-60% during the Delta wave and Omicron period, respectively. We identified around 200 occasions during which the wastewater SARS-CoV-2 viral load exceeded the expected level in any of 14 sewersheds. These anomalies disproportionally occurred during late January, late April - early May, early August, and from late-November to late-December, with frequencies exceeding the expectation assuming random occurrence (P < 0.05; bootstrapping test). Discussion: These estimates may be useful in understanding changes in underlying infection rate and help quantify changes in COVID-19 transmission and severity over time. We have also demonstrated that wastewater surveillance data can support the identification of time periods with potentially intensified transmission.