自动光纤铺设路径规划参考曲线的高效预分析和优化生成方法

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Fuhong Yang, Hong Xiao, Yugang Duan, Feng Wang, Jiahua Lou, Feng Yang, Shanshan Tang, Haojun Wang
{"title":"自动光纤铺设路径规划参考曲线的高效预分析和优化生成方法","authors":"Fuhong Yang, Hong Xiao, Yugang Duan, Feng Wang, Jiahua Lou, Feng Yang, Shanshan Tang, Haojun Wang","doi":"10.1177/00219983241270958","DOIUrl":null,"url":null,"abstract":"Complex curved composite components often rely on multiple reference curve algorithms for path planning in automated fiber placement. However, the reference curves are typically manually drawn. Moreover, designing the reference curves follows an iterative planning-analysis-improvement process, which can be inefficient. A new approach for the automatic pre-analysis and optimized generation of reference curves for fiber placement is proposed in this paper to enhance the efficiency of reference curve analysis and generation. Firstly, a pre-analysis algorithm for reference curves based on triangular meshes is proposed. This algorithm analyzes the theoretical geodesic curvature and angular deviation of the path before its planning. Subsequently, a comprehensive evaluation index for reference curve generation is formulated based on the pre-analysis algorithm, and the reference curve is optimized using genetic algorithms. The results demonstrate that the pre-analysis algorithm accurately computes the steering radius distribution of the path. Areas with over-limit steering radius can be eliminated while maintaining angular deviations within 10° by utilizing optimized reference curves for path planning.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient pre-analysis and optimization generation method for reference curves of automated fiber placement path planning\",\"authors\":\"Fuhong Yang, Hong Xiao, Yugang Duan, Feng Wang, Jiahua Lou, Feng Yang, Shanshan Tang, Haojun Wang\",\"doi\":\"10.1177/00219983241270958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex curved composite components often rely on multiple reference curve algorithms for path planning in automated fiber placement. However, the reference curves are typically manually drawn. Moreover, designing the reference curves follows an iterative planning-analysis-improvement process, which can be inefficient. A new approach for the automatic pre-analysis and optimized generation of reference curves for fiber placement is proposed in this paper to enhance the efficiency of reference curve analysis and generation. Firstly, a pre-analysis algorithm for reference curves based on triangular meshes is proposed. This algorithm analyzes the theoretical geodesic curvature and angular deviation of the path before its planning. Subsequently, a comprehensive evaluation index for reference curve generation is formulated based on the pre-analysis algorithm, and the reference curve is optimized using genetic algorithms. The results demonstrate that the pre-analysis algorithm accurately computes the steering radius distribution of the path. Areas with over-limit steering radius can be eliminated while maintaining angular deviations within 10° by utilizing optimized reference curves for path planning.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241270958\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241270958","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

复杂的曲面复合材料组件在自动纤维铺放过程中通常需要依靠多参考曲线算法进行路径规划。然而,这些参考曲线通常都是人工绘制的。此外,参考曲线的设计需要遵循 "规划-分析-改进 "的迭代过程,效率可能很低。为了提高参考曲线分析和生成的效率,本文提出了一种自动预分析和优化生成光纤铺放参考曲线的新方法。首先,本文提出了一种基于三角形网格的参考曲线预分析算法。该算法在路径规划前分析路径的理论大地曲率和角度偏差。随后,基于预分析算法制定了参考曲线生成的综合评价指标,并利用遗传算法对参考曲线进行了优化。结果表明,预分析算法能准确计算路径的转向半径分布。利用优化的参考曲线进行路径规划,可以消除转向半径超限的区域,同时将角度偏差保持在 10° 以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient pre-analysis and optimization generation method for reference curves of automated fiber placement path planning
Complex curved composite components often rely on multiple reference curve algorithms for path planning in automated fiber placement. However, the reference curves are typically manually drawn. Moreover, designing the reference curves follows an iterative planning-analysis-improvement process, which can be inefficient. A new approach for the automatic pre-analysis and optimized generation of reference curves for fiber placement is proposed in this paper to enhance the efficiency of reference curve analysis and generation. Firstly, a pre-analysis algorithm for reference curves based on triangular meshes is proposed. This algorithm analyzes the theoretical geodesic curvature and angular deviation of the path before its planning. Subsequently, a comprehensive evaluation index for reference curve generation is formulated based on the pre-analysis algorithm, and the reference curve is optimized using genetic algorithms. The results demonstrate that the pre-analysis algorithm accurately computes the steering radius distribution of the path. Areas with over-limit steering radius can be eliminated while maintaining angular deviations within 10° by utilizing optimized reference curves for path planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信