通过对称半简空间的同调过滤

IF 1 3区 数学 Q1 MATHEMATICS
Oishee Banerjee
{"title":"通过对称半简空间的同调过滤","authors":"Oishee Banerjee","doi":"10.1007/s00209-024-03563-z","DOIUrl":null,"url":null,"abstract":"<p>In the simplicial theory of hypercoverings we replace the indexing category <span>\\(\\Delta \\)</span> by the <i>symmetric simplicial category</i> <span>\\(\\Delta S\\)</span> and study (a class of) <span>\\(\\Delta _{\\textrm{inj}}S\\)</span>-hypercoverings, which we call <i>spaces admitting symmetric (semi)simplicial filtration</i>—this special class happens to have a structure of a module over a graded commutative monoid of the form <span>\\(\\textrm{Sym}\\,M\\)</span> for some space <i>M</i>. For <span>\\(\\Delta S\\)</span>-hypercoverings we construct a spectral sequence, somewhat like the Čech-to-derived category spectral sequence. The advantage of working with <span>\\(\\Delta S\\)</span> over <span>\\(\\Delta \\)</span> is that various combinatorial complexities that come with working on <span>\\(\\Delta \\)</span> are bypassed, giving simpler, unified proof of results like the computation of (in some cases, stable) singular cohomology (with <span>\\(\\mathbb {Q}\\)</span> coefficients) and étale cohomology (with <span>\\(\\mathbb {Q}_{\\ell }\\)</span> coefficients) of the moduli space of degree <i>n</i> maps <span>\\(C\\rightarrow \\mathbb {P}^r\\)</span> with <i>C</i> a smooth projective curve of genus <i>g</i>, of unordered configuration spaces, of the moduli space of smooth sections of a fixed <span>\\(\\mathfrak {g}^r_d\\)</span> that is <i>m</i>-very ample for some <i>m</i> etc. In the special case when a <span>\\(\\Delta _{\\textrm{inj}}S\\)</span>-object <i>X</i> <i>admits a symmetric semisimplicial filtration by</i> <i>M</i>, we relate these moduli spaces to a certain derived tensor.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filtration of cohomology via symmetric semisimplicial spaces\",\"authors\":\"Oishee Banerjee\",\"doi\":\"10.1007/s00209-024-03563-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the simplicial theory of hypercoverings we replace the indexing category <span>\\\\(\\\\Delta \\\\)</span> by the <i>symmetric simplicial category</i> <span>\\\\(\\\\Delta S\\\\)</span> and study (a class of) <span>\\\\(\\\\Delta _{\\\\textrm{inj}}S\\\\)</span>-hypercoverings, which we call <i>spaces admitting symmetric (semi)simplicial filtration</i>—this special class happens to have a structure of a module over a graded commutative monoid of the form <span>\\\\(\\\\textrm{Sym}\\\\,M\\\\)</span> for some space <i>M</i>. For <span>\\\\(\\\\Delta S\\\\)</span>-hypercoverings we construct a spectral sequence, somewhat like the Čech-to-derived category spectral sequence. The advantage of working with <span>\\\\(\\\\Delta S\\\\)</span> over <span>\\\\(\\\\Delta \\\\)</span> is that various combinatorial complexities that come with working on <span>\\\\(\\\\Delta \\\\)</span> are bypassed, giving simpler, unified proof of results like the computation of (in some cases, stable) singular cohomology (with <span>\\\\(\\\\mathbb {Q}\\\\)</span> coefficients) and étale cohomology (with <span>\\\\(\\\\mathbb {Q}_{\\\\ell }\\\\)</span> coefficients) of the moduli space of degree <i>n</i> maps <span>\\\\(C\\\\rightarrow \\\\mathbb {P}^r\\\\)</span> with <i>C</i> a smooth projective curve of genus <i>g</i>, of unordered configuration spaces, of the moduli space of smooth sections of a fixed <span>\\\\(\\\\mathfrak {g}^r_d\\\\)</span> that is <i>m</i>-very ample for some <i>m</i> etc. In the special case when a <span>\\\\(\\\\Delta _{\\\\textrm{inj}}S\\\\)</span>-object <i>X</i> <i>admits a symmetric semisimplicial filtration by</i> <i>M</i>, we relate these moduli spaces to a certain derived tensor.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03563-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03563-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在超覆盖的简单理论中,我们用对称简单范畴(\Δ S\ )来代替索引范畴(\Δ \),并研究(一类)\(\Δ _{\textrm{inj}}S\)-超覆盖、对于某个空间 M 而言,这一类空间恰好有一个分级交换单元的模块结构,其形式是 \(\textrm{Sym}\,M\)。对于 \(\Delta S\) -hypercoverings 我们构建了一个谱序列,有点像 Čech-to-derived category 谱序列。使用\(\Delta S\) 而不是\(\Delta \)的好处在于,绕过了使用\(\Delta \)时的各种组合复杂性,从而可以更简单、统一地证明结果,比如计算(在某些情况下)稳定的奇异同调、稳定的)奇异同调(与 \(\mathbb {Q}\) coefficients)和 n 度映射的模空间的 étale 同调(与 \(\mathbb {Q}_\{ell }\) coefficients),其中 C 是属 g 的光滑投影曲线、无序配置空间的无序配置空间,对于某个 m 是 m-very ample 的固定 \(\mathfrak {g}^r_d\) 的平滑截面的模空间等等。在一个 \(\Delta _{textrm{inj}}S\)对象 X 允许 M 对称半简过滤的特殊情况下,我们将这些模空间与某个派生张量联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Filtration of cohomology via symmetric semisimplicial spaces

Filtration of cohomology via symmetric semisimplicial spaces

In the simplicial theory of hypercoverings we replace the indexing category \(\Delta \) by the symmetric simplicial category \(\Delta S\) and study (a class of) \(\Delta _{\textrm{inj}}S\)-hypercoverings, which we call spaces admitting symmetric (semi)simplicial filtration—this special class happens to have a structure of a module over a graded commutative monoid of the form \(\textrm{Sym}\,M\) for some space M. For \(\Delta S\)-hypercoverings we construct a spectral sequence, somewhat like the Čech-to-derived category spectral sequence. The advantage of working with \(\Delta S\) over \(\Delta \) is that various combinatorial complexities that come with working on \(\Delta \) are bypassed, giving simpler, unified proof of results like the computation of (in some cases, stable) singular cohomology (with \(\mathbb {Q}\) coefficients) and étale cohomology (with \(\mathbb {Q}_{\ell }\) coefficients) of the moduli space of degree n maps \(C\rightarrow \mathbb {P}^r\) with C a smooth projective curve of genus g, of unordered configuration spaces, of the moduli space of smooth sections of a fixed \(\mathfrak {g}^r_d\) that is m-very ample for some m etc. In the special case when a \(\Delta _{\textrm{inj}}S\)-object X admits a symmetric semisimplicial filtration by M, we relate these moduli spaces to a certain derived tensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信