通过 X 射线辐射快速调节静电灵敏度和爆炸性能

IF 1.7 4区 工程技术 Q3 CHEMISTRY, APPLIED
Ying Zhang, An Li, Denan Kong, Huanjing Li, Xianshuang Wang, Yuheng Shan, Yage He, Yeping Ren, Lixiang Zhong, Wei Guo, Fanzhi Yang, Yao Zhou, Min Xia, Ruibin Liu
{"title":"通过 X 射线辐射快速调节静电灵敏度和爆炸性能","authors":"Ying Zhang, An Li, Denan Kong, Huanjing Li, Xianshuang Wang, Yuheng Shan, Yage He, Yeping Ren, Lixiang Zhong, Wei Guo, Fanzhi Yang, Yao Zhou, Min Xia, Ruibin Liu","doi":"10.1002/prep.202300313","DOIUrl":null,"url":null,"abstract":"It is highly desirable to actively modulate the explosive performance and sensitivity of traditional explosives, such as RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine), and HMX (cyclotetramethylene tetranitramine), especially to reduce their explosive power and electrostatic sensitivity. Herein, a new avenue is found to effectively modulate the explosive performance and electrostatic sensitivity by direct irradiation of high‐density X‐ray from synchrotron radiation. RDX as a kind of popular and high‐performance explosive, is chosen to demonstrate the modulated effectiveness. After X‐ray irradiation with different irradiation time, the detonation velocity (DV), detonation pressure (DP), heat of detonation (HoD), and electrostatic sensitivity of RDX are determined. Compared with the electrostatic sensitivity and explosive parameters of original high‐quality RDX, the maximum electrostatic sensitivity value is increased to 1061 mJ after irradiation, which is an enhancement ratio of 39.61 %. The lowest DV is 7.57 km/s (−14.27 %), the lowest DP is 16.23 GPa (−53.20 %), and the lowest HoD is 5.15 kJ/g (−9.65 %). These changes mainly originate from the changes in the structure and crystal structure of RDX molecules after irradiation, as evaluated by Scanning Electron Microscope (SEM), X‐ray Diffraction (XRD), and X‐ray Photoelectron Spectroscopy (XPS). The mechanism of RDX modulation by X‐ray is due to denitrification, which always accompanies lots of energy releases, thus impacting the electrostatic sensitivity and explosive power of RDX. Therefore, this study not only provides a new method for reducing electrostatic sensitivity to improve the safety of storage, transportation, and application of RDX, but also holds great potential to reduce explosive performance by non‐contact means.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"22 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid modulation of electrostatic sensitivity and explosive performance by X‐ray radiation\",\"authors\":\"Ying Zhang, An Li, Denan Kong, Huanjing Li, Xianshuang Wang, Yuheng Shan, Yage He, Yeping Ren, Lixiang Zhong, Wei Guo, Fanzhi Yang, Yao Zhou, Min Xia, Ruibin Liu\",\"doi\":\"10.1002/prep.202300313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is highly desirable to actively modulate the explosive performance and sensitivity of traditional explosives, such as RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine), and HMX (cyclotetramethylene tetranitramine), especially to reduce their explosive power and electrostatic sensitivity. Herein, a new avenue is found to effectively modulate the explosive performance and electrostatic sensitivity by direct irradiation of high‐density X‐ray from synchrotron radiation. RDX as a kind of popular and high‐performance explosive, is chosen to demonstrate the modulated effectiveness. After X‐ray irradiation with different irradiation time, the detonation velocity (DV), detonation pressure (DP), heat of detonation (HoD), and electrostatic sensitivity of RDX are determined. Compared with the electrostatic sensitivity and explosive parameters of original high‐quality RDX, the maximum electrostatic sensitivity value is increased to 1061 mJ after irradiation, which is an enhancement ratio of 39.61 %. The lowest DV is 7.57 km/s (−14.27 %), the lowest DP is 16.23 GPa (−53.20 %), and the lowest HoD is 5.15 kJ/g (−9.65 %). These changes mainly originate from the changes in the structure and crystal structure of RDX molecules after irradiation, as evaluated by Scanning Electron Microscope (SEM), X‐ray Diffraction (XRD), and X‐ray Photoelectron Spectroscopy (XPS). The mechanism of RDX modulation by X‐ray is due to denitrification, which always accompanies lots of energy releases, thus impacting the electrostatic sensitivity and explosive power of RDX. Therefore, this study not only provides a new method for reducing electrostatic sensitivity to improve the safety of storage, transportation, and application of RDX, but also holds great potential to reduce explosive performance by non‐contact means.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202300313\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300313","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

积极调节 RDX(六氢-1,3,5-三硝基-1,3,5-三嗪)和 HMX(环四亚甲基四硝胺)等传统炸药的爆炸性能和敏感性,特别是降低其爆炸威力和静电敏感性,是非常理想的。在此,我们找到了一条通过同步辐射的高密度 X 射线直接辐照来有效调节爆炸性能和静电敏感性的新途径。RDX 作为一种常用的高性能炸药,被选来演示其调制效果。在不同辐照时间的 X 射线辐照后,测定了 RDX 的爆速(DV)、爆压(DP)、爆热(HoD)和静电敏感性。与原始优质 RDX 的静电灵敏度和爆炸参数相比,辐照后的最大静电灵敏度值增至 1061 mJ,增强率为 39.61%。最低 DV 为 7.57 km/s(-14.27 %),最低 DP 为 16.23 GPa(-53.20 %),最低 HoD 为 5.15 kJ/g(-9.65 %)。通过扫描电子显微镜(SEM)、X 射线衍射(XRD)和 X 射线光电子能谱(XPS)评估,这些变化主要源于辐照后 RDX 分子结构和晶体结构的变化。X 射线对 RDX 的调制机理是由于脱硝作用,脱硝作用总是伴随着大量的能量释放,从而影响 RDX 的静电敏感性和爆炸力。因此,这项研究不仅提供了一种降低静电敏感性的新方法,以提高 RDX 的储存、运输和应用安全性,而且在通过非接触方式降低爆炸性能方面也具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid modulation of electrostatic sensitivity and explosive performance by X‐ray radiation
It is highly desirable to actively modulate the explosive performance and sensitivity of traditional explosives, such as RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine), and HMX (cyclotetramethylene tetranitramine), especially to reduce their explosive power and electrostatic sensitivity. Herein, a new avenue is found to effectively modulate the explosive performance and electrostatic sensitivity by direct irradiation of high‐density X‐ray from synchrotron radiation. RDX as a kind of popular and high‐performance explosive, is chosen to demonstrate the modulated effectiveness. After X‐ray irradiation with different irradiation time, the detonation velocity (DV), detonation pressure (DP), heat of detonation (HoD), and electrostatic sensitivity of RDX are determined. Compared with the electrostatic sensitivity and explosive parameters of original high‐quality RDX, the maximum electrostatic sensitivity value is increased to 1061 mJ after irradiation, which is an enhancement ratio of 39.61 %. The lowest DV is 7.57 km/s (−14.27 %), the lowest DP is 16.23 GPa (−53.20 %), and the lowest HoD is 5.15 kJ/g (−9.65 %). These changes mainly originate from the changes in the structure and crystal structure of RDX molecules after irradiation, as evaluated by Scanning Electron Microscope (SEM), X‐ray Diffraction (XRD), and X‐ray Photoelectron Spectroscopy (XPS). The mechanism of RDX modulation by X‐ray is due to denitrification, which always accompanies lots of energy releases, thus impacting the electrostatic sensitivity and explosive power of RDX. Therefore, this study not only provides a new method for reducing electrostatic sensitivity to improve the safety of storage, transportation, and application of RDX, but also holds great potential to reduce explosive performance by non‐contact means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Propellants, Explosives, Pyrotechnics
Propellants, Explosives, Pyrotechnics 工程技术-工程:化工
CiteScore
4.20
自引率
16.70%
发文量
235
审稿时长
2.7 months
期刊介绍: Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year. PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信