Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh
{"title":"关于矩阵的相关性差距","authors":"Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh","doi":"10.1007/s10107-024-02116-w","DOIUrl":null,"url":null,"abstract":"<p>A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least <span>\\(1-1/e\\)</span>, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the correlation gap of matroids\",\"authors\":\"Edin Husić, Zhuan Khye Koh, Georg Loho, László A. Végh\",\"doi\":\"10.1007/s10107-024-02116-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least <span>\\\\(1-1/e\\\\)</span>, and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02116-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02116-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A set function can be extended to the unit cube in various ways; the correlation gap measures the ratio between two natural extensions. This quantity has been identified as the performance guarantee in a range of approximation algorithms and mechanism design settings. It is known that the correlation gap of a monotone submodular function is at least \(1-1/e\), and this is tight for simple matroid rank functions. We initiate a fine-grained study of the correlation gap of matroid rank functions. In particular, we present an improved lower bound on the correlation gap as parametrized by the rank and girth of the matroid. We also show that for any matroid, the correlation gap of its weighted rank function is minimized under uniform weights. Such improved lower bounds have direct applications for submodular maximization under matroid constraints, mechanism design, and contention resolution schemes.