重排和蒙日-安培方程

IF 1 3区 数学 Q1 MATHEMATICS
Zbigniew Błocki
{"title":"重排和蒙日-安培方程","authors":"Zbigniew Błocki","doi":"10.1007/s00209-024-03557-x","DOIUrl":null,"url":null,"abstract":"<p>We show that the direct counterpart of the Talenti symmetrization estimate for the Laplacian does not hold neither for the complex nor real Monge–Ampère equations. We also use this Talenti result to improve some known estimates for subharmonic functions in <span>\\({\\mathbb {C}},\\)</span> where the constant depends on the area of the domain, instead of the diameter.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rearrangements and the Monge–Ampère equations\",\"authors\":\"Zbigniew Błocki\",\"doi\":\"10.1007/s00209-024-03557-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the direct counterpart of the Talenti symmetrization estimate for the Laplacian does not hold neither for the complex nor real Monge–Ampère equations. We also use this Talenti result to improve some known estimates for subharmonic functions in <span>\\\\({\\\\mathbb {C}},\\\\)</span> where the constant depends on the area of the domain, instead of the diameter.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03557-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03557-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于复数或实数蒙日-安培方程,拉普拉斯函数的塔伦蒂对称性估计的直接对应关系都不成立。我们还利用这一 Talenti 结果改进了对\({\mathbb {C}},\) 中次谐函数的一些已知估计,其中常数取决于域的面积而非直径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rearrangements and the Monge–Ampère equations

We show that the direct counterpart of the Talenti symmetrization estimate for the Laplacian does not hold neither for the complex nor real Monge–Ampère equations. We also use this Talenti result to improve some known estimates for subharmonic functions in \({\mathbb {C}},\) where the constant depends on the area of the domain, instead of the diameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信