基于分解表示学习的一次性知识图谱补全

Youmin Zhang, Lei Sun, Ye Wang, Qun Liu, Li Liu
{"title":"基于分解表示学习的一次性知识图谱补全","authors":"Youmin Zhang, Lei Sun, Ye Wang, Qun Liu, Li Liu","doi":"10.1007/s00521-024-10236-9","DOIUrl":null,"url":null,"abstract":"<p>One-shot knowledge graph completion (KGC) aims to infer unseen facts when only one support entity pair is available for a particular relationship. Prior studies learn reference representations from one support pair for matching query pairs. This strategy can be challenging, particularly when dealing with multiple relationships between identical support pairs, resulting in indistinguishable reference representations. To this end, we propose a disentangled representation learning framework for one-shot KGC. Specifically, to learn sufficient representations, we construct an entity encoder with a fine-grained attention mechanism to explicitly model the input and output neighbors. We adopt an orthogonal regularizer to promote the independence of learned factors in entity representation, enabling the matching processor with max pooling to adaptively identify the semantic roles associated with a particular relation. Subsequently, the one-shot KGC is accomplished by seamlessly integrating the aforementioned modules in an end-to-end learning manner. Extensive experiments on real-world datasets demonstrate the outperformance of the proposed framework.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-shot knowledge graph completion based on disentangled representation learning\",\"authors\":\"Youmin Zhang, Lei Sun, Ye Wang, Qun Liu, Li Liu\",\"doi\":\"10.1007/s00521-024-10236-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One-shot knowledge graph completion (KGC) aims to infer unseen facts when only one support entity pair is available for a particular relationship. Prior studies learn reference representations from one support pair for matching query pairs. This strategy can be challenging, particularly when dealing with multiple relationships between identical support pairs, resulting in indistinguishable reference representations. To this end, we propose a disentangled representation learning framework for one-shot KGC. Specifically, to learn sufficient representations, we construct an entity encoder with a fine-grained attention mechanism to explicitly model the input and output neighbors. We adopt an orthogonal regularizer to promote the independence of learned factors in entity representation, enabling the matching processor with max pooling to adaptively identify the semantic roles associated with a particular relation. Subsequently, the one-shot KGC is accomplished by seamlessly integrating the aforementioned modules in an end-to-end learning manner. Extensive experiments on real-world datasets demonstrate the outperformance of the proposed framework.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10236-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10236-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一次性知识图谱补全(KGC)的目的是在特定关系只有一个支持实体对的情况下,推断出不可见的事实。之前的研究是从匹配查询对的一个支持对中学习参考表征。这种策略具有挑战性,尤其是在处理相同支持对之间的多种关系时,会导致参考表征无法区分。为此,我们提出了一种适用于单击 KGC 的分离表征学习框架。具体来说,为了学习足够的表征,我们构建了一个具有细粒度关注机制的实体编码器,以明确地对输入和输出邻域建模。我们采用正交规整器来促进实体表征中已学因素的独立性,从而使具有最大池化功能的匹配处理器能够自适应地识别与特定关系相关的语义角色。随后,通过以端到端的学习方式无缝集成上述模块,实现了一次性 KGC。在真实世界数据集上进行的大量实验证明,所提出的框架性能更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-shot knowledge graph completion based on disentangled representation learning

One-shot knowledge graph completion based on disentangled representation learning

One-shot knowledge graph completion (KGC) aims to infer unseen facts when only one support entity pair is available for a particular relationship. Prior studies learn reference representations from one support pair for matching query pairs. This strategy can be challenging, particularly when dealing with multiple relationships between identical support pairs, resulting in indistinguishable reference representations. To this end, we propose a disentangled representation learning framework for one-shot KGC. Specifically, to learn sufficient representations, we construct an entity encoder with a fine-grained attention mechanism to explicitly model the input and output neighbors. We adopt an orthogonal regularizer to promote the independence of learned factors in entity representation, enabling the matching processor with max pooling to adaptively identify the semantic roles associated with a particular relation. Subsequently, the one-shot KGC is accomplished by seamlessly integrating the aforementioned modules in an end-to-end learning manner. Extensive experiments on real-world datasets demonstrate the outperformance of the proposed framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信