{"title":"监测系统中的纠缠动力学与量子跃迁的作用","authors":"Youenn Le Gal, Xhek Turkeshi, Marco Schirò","doi":"10.1103/prxquantum.5.030329","DOIUrl":null,"url":null,"abstract":"Monitored quantum many-body systems display a rich pattern of entanglement dynamics, which is unique to this nonunitary setting. This work studies the effect of quantum jumps on the entanglement dynamics beyond the no-click limit corresponding to a deterministic non-Hermitian evolution. To this aim, we introduce a new tool that looks at the statistics of entanglement-entropy gain and loss after and in between quantum jumps. This insight allows us to build a simple stochastic model of a random walk with partial resetting, which reproduces the entanglement dynamics, and to dissect the mutual role of jumps and non-Hermitian evolution on the entanglement scaling. We apply these ideas to the study of measurement-induced transitions in monitored fermions. We demonstrate that significant deviations from the no-click limit arise whenever quantum jumps strongly renormalize the non-Hermitian dynamics, as in the case of models with <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math> symmetry at weak monitoring. On the other hand, we show that the weak-monitoring phase of the Ising chain leads to a robust subvolume logarithmic phase due to weakly renormalized non-Hermitian dynamics.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement Dynamics in Monitored Systems and the Role of Quantum Jumps\",\"authors\":\"Youenn Le Gal, Xhek Turkeshi, Marco Schirò\",\"doi\":\"10.1103/prxquantum.5.030329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitored quantum many-body systems display a rich pattern of entanglement dynamics, which is unique to this nonunitary setting. This work studies the effect of quantum jumps on the entanglement dynamics beyond the no-click limit corresponding to a deterministic non-Hermitian evolution. To this aim, we introduce a new tool that looks at the statistics of entanglement-entropy gain and loss after and in between quantum jumps. This insight allows us to build a simple stochastic model of a random walk with partial resetting, which reproduces the entanglement dynamics, and to dissect the mutual role of jumps and non-Hermitian evolution on the entanglement scaling. We apply these ideas to the study of measurement-induced transitions in monitored fermions. We demonstrate that significant deviations from the no-click limit arise whenever quantum jumps strongly renormalize the non-Hermitian dynamics, as in the case of models with <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>U</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math> symmetry at weak monitoring. On the other hand, we show that the weak-monitoring phase of the Ising chain leads to a robust subvolume logarithmic phase due to weakly renormalized non-Hermitian dynamics.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entanglement Dynamics in Monitored Systems and the Role of Quantum Jumps
Monitored quantum many-body systems display a rich pattern of entanglement dynamics, which is unique to this nonunitary setting. This work studies the effect of quantum jumps on the entanglement dynamics beyond the no-click limit corresponding to a deterministic non-Hermitian evolution. To this aim, we introduce a new tool that looks at the statistics of entanglement-entropy gain and loss after and in between quantum jumps. This insight allows us to build a simple stochastic model of a random walk with partial resetting, which reproduces the entanglement dynamics, and to dissect the mutual role of jumps and non-Hermitian evolution on the entanglement scaling. We apply these ideas to the study of measurement-induced transitions in monitored fermions. We demonstrate that significant deviations from the no-click limit arise whenever quantum jumps strongly renormalize the non-Hermitian dynamics, as in the case of models with symmetry at weak monitoring. On the other hand, we show that the weak-monitoring phase of the Ising chain leads to a robust subvolume logarithmic phase due to weakly renormalized non-Hermitian dynamics.