{"title":"利用神经网络优化炼油厂再沸器和冷凝器的能耗","authors":"Farshad Farahbod","doi":"10.1007/s00521-024-10049-w","DOIUrl":null,"url":null,"abstract":"<p>The distillation tower is a crucial component of the refining process. Its energy efficiency has been a major area of research, especially following the oil crisis. This study focuses on optimizing energy consumption in the Shiraz refinery’s distillation unit. The unit is simulated using ASPEN-HYSYS software. Simulation results are validated against real data to ensure model accuracy. The operational data aligns well with model predictions. Following the creation of a data bank using HYSYS software, the tower’s operating conditions are optimized using neural networks and MATLAB software. In this study, a neural network model is developed for the distillation tower. This modeling approach is cost-effective, does not require complex theories, and does not rely on prior system knowledge. Additionally, real-time modeling is achievable through parallel distributed processing. The findings indicate that the optimal feed tray is 9 and the optimal feed temperature is 283.5°C. Furthermore, the optimized number of trays in the distillation tower is 47. Results show that in optimal conditions, cold and hot energy consumption are reduced by approximately 9.7% and 10.8%, respectively. Moreover, implementing optimal conditions results in a reduction of hot energy consumption in the reboiler by 60,000 MW and a reduction of cold energy consumption in the condenser by 30,000 MW.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of energy consumption of oil refinery reboiler and condenser using neural network\",\"authors\":\"Farshad Farahbod\",\"doi\":\"10.1007/s00521-024-10049-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The distillation tower is a crucial component of the refining process. Its energy efficiency has been a major area of research, especially following the oil crisis. This study focuses on optimizing energy consumption in the Shiraz refinery’s distillation unit. The unit is simulated using ASPEN-HYSYS software. Simulation results are validated against real data to ensure model accuracy. The operational data aligns well with model predictions. Following the creation of a data bank using HYSYS software, the tower’s operating conditions are optimized using neural networks and MATLAB software. In this study, a neural network model is developed for the distillation tower. This modeling approach is cost-effective, does not require complex theories, and does not rely on prior system knowledge. Additionally, real-time modeling is achievable through parallel distributed processing. The findings indicate that the optimal feed tray is 9 and the optimal feed temperature is 283.5°C. Furthermore, the optimized number of trays in the distillation tower is 47. Results show that in optimal conditions, cold and hot energy consumption are reduced by approximately 9.7% and 10.8%, respectively. Moreover, implementing optimal conditions results in a reduction of hot energy consumption in the reboiler by 60,000 MW and a reduction of cold energy consumption in the condenser by 30,000 MW.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10049-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10049-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of energy consumption of oil refinery reboiler and condenser using neural network
The distillation tower is a crucial component of the refining process. Its energy efficiency has been a major area of research, especially following the oil crisis. This study focuses on optimizing energy consumption in the Shiraz refinery’s distillation unit. The unit is simulated using ASPEN-HYSYS software. Simulation results are validated against real data to ensure model accuracy. The operational data aligns well with model predictions. Following the creation of a data bank using HYSYS software, the tower’s operating conditions are optimized using neural networks and MATLAB software. In this study, a neural network model is developed for the distillation tower. This modeling approach is cost-effective, does not require complex theories, and does not rely on prior system knowledge. Additionally, real-time modeling is achievable through parallel distributed processing. The findings indicate that the optimal feed tray is 9 and the optimal feed temperature is 283.5°C. Furthermore, the optimized number of trays in the distillation tower is 47. Results show that in optimal conditions, cold and hot energy consumption are reduced by approximately 9.7% and 10.8%, respectively. Moreover, implementing optimal conditions results in a reduction of hot energy consumption in the reboiler by 60,000 MW and a reduction of cold energy consumption in the condenser by 30,000 MW.