Ujwalla Gawande, Kamal Hajari, Yogesh Golhar, Punit Fulzele
{"title":"一种基于灰狼优化的新颖关键帧提取方法,用于使用 ConvLSTM 进行视频分类","authors":"Ujwalla Gawande, Kamal Hajari, Yogesh Golhar, Punit Fulzele","doi":"10.1007/s00521-024-10266-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a novel keyframe extraction extraction method based on the gray wolf optimization (GWO) algorithm, addressing the challenge of information loss in traditional methods due to redundant and similar frames. The proposed method GWOKConvLSTM prioritizes speed, accuracy, and compression efficiency while preserving semantic information. Inspired by wolf behavior, we construct a fitness function that minimizes reconstruction error and achieves optimal compression ratios below 8%. Compared to traditional methods, our GWO method achieves the lowest reconstruction error for a given compression rate, providing a concise and visually coherent summary of keyframes while maintaining consistency across similar motions. Additionally, we propose a template-based method for video classification tasks, achieving the highest accuracy when combined with pre-trained CNNs and ConvLSTM. Our method effectively prevents dynamic background noise from affecting keyframe selection, leading to significantly improve video classification performance using deep neural networks.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel gray wolf optimization-based key frame extraction method for video classification using ConvLSTM\",\"authors\":\"Ujwalla Gawande, Kamal Hajari, Yogesh Golhar, Punit Fulzele\",\"doi\":\"10.1007/s00521-024-10266-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a novel keyframe extraction extraction method based on the gray wolf optimization (GWO) algorithm, addressing the challenge of information loss in traditional methods due to redundant and similar frames. The proposed method GWOKConvLSTM prioritizes speed, accuracy, and compression efficiency while preserving semantic information. Inspired by wolf behavior, we construct a fitness function that minimizes reconstruction error and achieves optimal compression ratios below 8%. Compared to traditional methods, our GWO method achieves the lowest reconstruction error for a given compression rate, providing a concise and visually coherent summary of keyframes while maintaining consistency across similar motions. Additionally, we propose a template-based method for video classification tasks, achieving the highest accuracy when combined with pre-trained CNNs and ConvLSTM. Our method effectively prevents dynamic background noise from affecting keyframe selection, leading to significantly improve video classification performance using deep neural networks.</p>\",\"PeriodicalId\":18925,\"journal\":{\"name\":\"Neural Computing and Applications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-024-10266-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10266-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel gray wolf optimization-based key frame extraction method for video classification using ConvLSTM
In this paper, we propose a novel keyframe extraction extraction method based on the gray wolf optimization (GWO) algorithm, addressing the challenge of information loss in traditional methods due to redundant and similar frames. The proposed method GWOKConvLSTM prioritizes speed, accuracy, and compression efficiency while preserving semantic information. Inspired by wolf behavior, we construct a fitness function that minimizes reconstruction error and achieves optimal compression ratios below 8%. Compared to traditional methods, our GWO method achieves the lowest reconstruction error for a given compression rate, providing a concise and visually coherent summary of keyframes while maintaining consistency across similar motions. Additionally, we propose a template-based method for video classification tasks, achieving the highest accuracy when combined with pre-trained CNNs and ConvLSTM. Our method effectively prevents dynamic background noise from affecting keyframe selection, leading to significantly improve video classification performance using deep neural networks.