{"title":"USP1 对炎性小体成分的多重调控作用促进甲状腺滤泡细胞的脓毒症并导致桥本氏甲状腺炎的恶化","authors":"Xuying Zhao, Wenyu Ni, Wenjie Zheng, Wenkai Ni, Chunfeng Sun, Yunjuan Gu, Zhifeng Gu","doi":"10.1186/s10020-024-00885-w","DOIUrl":null,"url":null,"abstract":"Inflammatory diseases are often initiated by the activation of inflammasomes triggered by pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs), which mediate pyroptosis. Although pyroptosis resulting from aberrant inflammasome triggering in thyroid follicular cells (TFCs) has been observed in Hashimoto's thyroiditis (HT) patients, the underlying mechanisms remain largely unknown. Given the extensive involvement of protein ubiquitination and deubiquitination in inflammatory diseases, we aimed to investigate how deubiquitinating enzymes regulate thyroid follicular cell pyroptosis and HT pathogenesis. Our study specifically investigated the role of Ubiquitin-specific peptidase 1 (USP1), a deubiquitinase (DUB), in regulating the inflammasome components NLRP3 and AIM2, which are crucial in pyroptosis. We conducted a series of experiments to elucidate the function of USP1 in promoting pyroptosis associated with inflammasomes and the progression of HT. These experiments involved techniques such as USP1 knockdown or inhibition, measurement of key pyroptosis indicators including caspase-1, caspase-1 p20, and GSDMD-N, and examination of the effects of USP1 abrogation on HT using a mouse model. Furthermore, we explored the impact of USP1 on NLRP3 transcription and its potential interaction with p65 nuclear transportation. Our findings provide compelling evidence indicating that USP1 plays a pivotal role in promoting inflammasome-mediated pyroptosis and HT progression by stabilizing NLRP3 and AIM2 through deubiquitination. Furthermore, we discovered that USP1 modulates the transcription of NLRP3 by facilitating p65 nuclear transportation. Knockdown or inhibition of USP1 resulted in weakened cell pyroptosis, as evidenced by reduced levels of caspase-1 p20 and GSDMD-N, which could be restored upon AIM2 overexpression. Remarkably, USP1 abrogation significantly ameliorated HT in the mice model, likely to that treating mice with pyroptosis inhibitors VX-765 and disulfiram. Our study highlights a regulatory mechanism of USP1 on inflammasome activation and pyroptosis in TFCs during HT pathogenesis. These findings expand our understanding of HT and suggest that inhibiting USP1 may be a potential treatment strategy for managing HT.","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-regulatory potency of USP1 on inflammasome components promotes pyroptosis in thyroid follicular cells and contributes to the progression of Hashimoto's thyroiditis\",\"authors\":\"Xuying Zhao, Wenyu Ni, Wenjie Zheng, Wenkai Ni, Chunfeng Sun, Yunjuan Gu, Zhifeng Gu\",\"doi\":\"10.1186/s10020-024-00885-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inflammatory diseases are often initiated by the activation of inflammasomes triggered by pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs), which mediate pyroptosis. Although pyroptosis resulting from aberrant inflammasome triggering in thyroid follicular cells (TFCs) has been observed in Hashimoto's thyroiditis (HT) patients, the underlying mechanisms remain largely unknown. Given the extensive involvement of protein ubiquitination and deubiquitination in inflammatory diseases, we aimed to investigate how deubiquitinating enzymes regulate thyroid follicular cell pyroptosis and HT pathogenesis. Our study specifically investigated the role of Ubiquitin-specific peptidase 1 (USP1), a deubiquitinase (DUB), in regulating the inflammasome components NLRP3 and AIM2, which are crucial in pyroptosis. We conducted a series of experiments to elucidate the function of USP1 in promoting pyroptosis associated with inflammasomes and the progression of HT. These experiments involved techniques such as USP1 knockdown or inhibition, measurement of key pyroptosis indicators including caspase-1, caspase-1 p20, and GSDMD-N, and examination of the effects of USP1 abrogation on HT using a mouse model. Furthermore, we explored the impact of USP1 on NLRP3 transcription and its potential interaction with p65 nuclear transportation. Our findings provide compelling evidence indicating that USP1 plays a pivotal role in promoting inflammasome-mediated pyroptosis and HT progression by stabilizing NLRP3 and AIM2 through deubiquitination. Furthermore, we discovered that USP1 modulates the transcription of NLRP3 by facilitating p65 nuclear transportation. Knockdown or inhibition of USP1 resulted in weakened cell pyroptosis, as evidenced by reduced levels of caspase-1 p20 and GSDMD-N, which could be restored upon AIM2 overexpression. Remarkably, USP1 abrogation significantly ameliorated HT in the mice model, likely to that treating mice with pyroptosis inhibitors VX-765 and disulfiram. Our study highlights a regulatory mechanism of USP1 on inflammasome activation and pyroptosis in TFCs during HT pathogenesis. These findings expand our understanding of HT and suggest that inhibiting USP1 may be a potential treatment strategy for managing HT.\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00885-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00885-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Multi-regulatory potency of USP1 on inflammasome components promotes pyroptosis in thyroid follicular cells and contributes to the progression of Hashimoto's thyroiditis
Inflammatory diseases are often initiated by the activation of inflammasomes triggered by pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs), which mediate pyroptosis. Although pyroptosis resulting from aberrant inflammasome triggering in thyroid follicular cells (TFCs) has been observed in Hashimoto's thyroiditis (HT) patients, the underlying mechanisms remain largely unknown. Given the extensive involvement of protein ubiquitination and deubiquitination in inflammatory diseases, we aimed to investigate how deubiquitinating enzymes regulate thyroid follicular cell pyroptosis and HT pathogenesis. Our study specifically investigated the role of Ubiquitin-specific peptidase 1 (USP1), a deubiquitinase (DUB), in regulating the inflammasome components NLRP3 and AIM2, which are crucial in pyroptosis. We conducted a series of experiments to elucidate the function of USP1 in promoting pyroptosis associated with inflammasomes and the progression of HT. These experiments involved techniques such as USP1 knockdown or inhibition, measurement of key pyroptosis indicators including caspase-1, caspase-1 p20, and GSDMD-N, and examination of the effects of USP1 abrogation on HT using a mouse model. Furthermore, we explored the impact of USP1 on NLRP3 transcription and its potential interaction with p65 nuclear transportation. Our findings provide compelling evidence indicating that USP1 plays a pivotal role in promoting inflammasome-mediated pyroptosis and HT progression by stabilizing NLRP3 and AIM2 through deubiquitination. Furthermore, we discovered that USP1 modulates the transcription of NLRP3 by facilitating p65 nuclear transportation. Knockdown or inhibition of USP1 resulted in weakened cell pyroptosis, as evidenced by reduced levels of caspase-1 p20 and GSDMD-N, which could be restored upon AIM2 overexpression. Remarkably, USP1 abrogation significantly ameliorated HT in the mice model, likely to that treating mice with pyroptosis inhibitors VX-765 and disulfiram. Our study highlights a regulatory mechanism of USP1 on inflammasome activation and pyroptosis in TFCs during HT pathogenesis. These findings expand our understanding of HT and suggest that inhibiting USP1 may be a potential treatment strategy for managing HT.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.