Kévin Hémery, Khaldoon Ghanem, Eleanor Crane, Sara L. Campbell, Joan M. Dreiling, Caroline Figgatt, Cameron Foltz, John P. Gaebler, Jacob Johansen, Michael Mills, Steven A. Moses, Juan M. Pino, Anthony Ransford, Mary Rowe, Peter Siegfried, Russell P. Stutz, Henrik Dreyer, Alexander Schuckert, Ramil Nigmatullin
{"title":"在离子阱量子计算机上测量费米-哈伯德模型有限能特性的洛施米特振幅","authors":"Kévin Hémery, Khaldoon Ghanem, Eleanor Crane, Sara L. Campbell, Joan M. Dreiling, Caroline Figgatt, Cameron Foltz, John P. Gaebler, Jacob Johansen, Michael Mills, Steven A. Moses, Juan M. Pino, Anthony Ransford, Mary Rowe, Peter Siegfried, Russell P. Stutz, Henrik Dreyer, Alexander Schuckert, Ramil Nigmatullin","doi":"10.1103/prxquantum.5.030323","DOIUrl":null,"url":null,"abstract":"Calculating the equilibrium properties of condensed-matter systems is one of the promising applications of near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have been proposed to efficiently extract these properties from a measurement of the Loschmidt amplitude <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo fence=\"false\" stretchy=\"false\">⟨</mo><mi>ψ</mi><mrow><mo stretchy=\"false\">|</mo></mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mrow><mover><mi>H</mi><mo stretchy=\"false\">^</mo></mover></mrow><mi>t</mi></mrow></msup><mrow><mo stretchy=\"false\">|</mo></mrow><mi>ψ</mi><mo fence=\"false\" stretchy=\"false\">⟩</mo></math> from initial states <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo stretchy=\"false\">|</mo></mrow><mi>ψ</mi><mo fence=\"false\" stretchy=\"false\">⟩</mo></math> and a time evolution under the Hamiltonian <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mover><mi>H</mi><mo stretchy=\"false\">^</mo></mover></mrow></math> up to short times <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi></math>. In this work, we study the operation of this algorithm on a present-day quantum computer. Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>16</mn></math>-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device. We assess the effect of noise on the Loschmidt amplitude and implement algorithm-specific error-mitigation techniques. By using a thus-motivated error model, we numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies. Finally, we estimate the resources needed for scaling up the algorithm.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Loschmidt Amplitude for Finite-Energy Properties of the Fermi-Hubbard Model on an Ion-Trap Quantum Computer\",\"authors\":\"Kévin Hémery, Khaldoon Ghanem, Eleanor Crane, Sara L. Campbell, Joan M. Dreiling, Caroline Figgatt, Cameron Foltz, John P. Gaebler, Jacob Johansen, Michael Mills, Steven A. Moses, Juan M. Pino, Anthony Ransford, Mary Rowe, Peter Siegfried, Russell P. Stutz, Henrik Dreyer, Alexander Schuckert, Ramil Nigmatullin\",\"doi\":\"10.1103/prxquantum.5.030323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating the equilibrium properties of condensed-matter systems is one of the promising applications of near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have been proposed to efficiently extract these properties from a measurement of the Loschmidt amplitude <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mo><mi>ψ</mi><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><msup><mi>e</mi><mrow><mo>−</mo><mi>i</mi><mrow><mover><mi>H</mi><mo stretchy=\\\"false\\\">^</mo></mover></mrow><mi>t</mi></mrow></msup><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><mi>ψ</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mo></math> from initial states <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo stretchy=\\\"false\\\">|</mo></mrow><mi>ψ</mi><mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mo></math> and a time evolution under the Hamiltonian <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mover><mi>H</mi><mo stretchy=\\\"false\\\">^</mo></mover></mrow></math> up to short times <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>t</mi></math>. In this work, we study the operation of this algorithm on a present-day quantum computer. Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>16</mn></math>-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device. We assess the effect of noise on the Loschmidt amplitude and implement algorithm-specific error-mitigation techniques. By using a thus-motivated error model, we numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies. Finally, we estimate the resources needed for scaling up the algorithm.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring the Loschmidt Amplitude for Finite-Energy Properties of the Fermi-Hubbard Model on an Ion-Trap Quantum Computer
Calculating the equilibrium properties of condensed-matter systems is one of the promising applications of near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have been proposed to efficiently extract these properties from a measurement of the Loschmidt amplitude from initial states and a time evolution under the Hamiltonian up to short times . In this work, we study the operation of this algorithm on a present-day quantum computer. Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a -site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device. We assess the effect of noise on the Loschmidt amplitude and implement algorithm-specific error-mitigation techniques. By using a thus-motivated error model, we numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies. Finally, we estimate the resources needed for scaling up the algorithm.