Sampath Suranjan Salins, Shiva Kumar, Sawan Shetty, H. K. Sachidananda, Mohammad Shayan Asjad Khan
{"title":"用于汽车应用的铝基金属泡沫特性表征","authors":"Sampath Suranjan Salins, Shiva Kumar, Sawan Shetty, H. K. Sachidananda, Mohammad Shayan Asjad Khan","doi":"10.1007/s13369-024-09399-3","DOIUrl":null,"url":null,"abstract":"<p>Metal foams are solids where the gas is filled inside uniformly in the metal matrix. Blowing agent supplies air inside the parent metal, and metal foam has emerged to be a promising material because of its low density, high absorption capacity, low thermal conductivity and high strength which finds its huge applications in automobile components. The present work deals with the application of the aluminium metal foam with different densities 200 and 400 kg/m<sup>3</sup> in automobiles. Various tests such as toughness, hardness, bending and compression are carried out for four chosen densities, and the values are compared with the aluminium base metal. The result showed that the hardness value increased significantly by 24.48% with the rise in the density from 200 to 400 kg/m<sup>3</sup>. Maximum modulus of resilience for the low-density specimen is found to be 2.21 MJ/m<sup>3</sup>. Surface topography showed irregular pore shapes with discontinuity, resulting in a loss of cell integrity with the neighbouring cell walls. This affected the performance of the foam significantly. Thermal experiments were carried out to determine the thermal conductivity where thermal conductivity increased by 122% with the rise in the density from 200 to 400 kg/m<sup>3</sup>. Based on the results, it is concluded that aluminium foam with density 400 kg/m<sup>3</sup> can be recommended for use in automobile applications due to its lightweight properties, which contribute to improving fuel efficiency, impact absorption capacity and the vehicle’s speed. Additionally, the air trapped within the foam cells serves as a sound barrier and insulator in cars.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"38 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Aluminium-Based Metal Foam Properties for Automotive Applications\",\"authors\":\"Sampath Suranjan Salins, Shiva Kumar, Sawan Shetty, H. K. Sachidananda, Mohammad Shayan Asjad Khan\",\"doi\":\"10.1007/s13369-024-09399-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metal foams are solids where the gas is filled inside uniformly in the metal matrix. Blowing agent supplies air inside the parent metal, and metal foam has emerged to be a promising material because of its low density, high absorption capacity, low thermal conductivity and high strength which finds its huge applications in automobile components. The present work deals with the application of the aluminium metal foam with different densities 200 and 400 kg/m<sup>3</sup> in automobiles. Various tests such as toughness, hardness, bending and compression are carried out for four chosen densities, and the values are compared with the aluminium base metal. The result showed that the hardness value increased significantly by 24.48% with the rise in the density from 200 to 400 kg/m<sup>3</sup>. Maximum modulus of resilience for the low-density specimen is found to be 2.21 MJ/m<sup>3</sup>. Surface topography showed irregular pore shapes with discontinuity, resulting in a loss of cell integrity with the neighbouring cell walls. This affected the performance of the foam significantly. Thermal experiments were carried out to determine the thermal conductivity where thermal conductivity increased by 122% with the rise in the density from 200 to 400 kg/m<sup>3</sup>. Based on the results, it is concluded that aluminium foam with density 400 kg/m<sup>3</sup> can be recommended for use in automobile applications due to its lightweight properties, which contribute to improving fuel efficiency, impact absorption capacity and the vehicle’s speed. Additionally, the air trapped within the foam cells serves as a sound barrier and insulator in cars.</p>\",\"PeriodicalId\":8109,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s13369-024-09399-3\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09399-3","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Characterization of the Aluminium-Based Metal Foam Properties for Automotive Applications
Metal foams are solids where the gas is filled inside uniformly in the metal matrix. Blowing agent supplies air inside the parent metal, and metal foam has emerged to be a promising material because of its low density, high absorption capacity, low thermal conductivity and high strength which finds its huge applications in automobile components. The present work deals with the application of the aluminium metal foam with different densities 200 and 400 kg/m3 in automobiles. Various tests such as toughness, hardness, bending and compression are carried out for four chosen densities, and the values are compared with the aluminium base metal. The result showed that the hardness value increased significantly by 24.48% with the rise in the density from 200 to 400 kg/m3. Maximum modulus of resilience for the low-density specimen is found to be 2.21 MJ/m3. Surface topography showed irregular pore shapes with discontinuity, resulting in a loss of cell integrity with the neighbouring cell walls. This affected the performance of the foam significantly. Thermal experiments were carried out to determine the thermal conductivity where thermal conductivity increased by 122% with the rise in the density from 200 to 400 kg/m3. Based on the results, it is concluded that aluminium foam with density 400 kg/m3 can be recommended for use in automobile applications due to its lightweight properties, which contribute to improving fuel efficiency, impact absorption capacity and the vehicle’s speed. Additionally, the air trapped within the foam cells serves as a sound barrier and insulator in cars.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.