Rong Chen, Shunmin Zhang, Xiaoyuan Huang, Xiang Li, Jiansong Peng
{"title":"基于红绿蓝空间的生态网络构建:中国大理市案例研究","authors":"Rong Chen, Shunmin Zhang, Xiaoyuan Huang, Xiang Li, Jiansong Peng","doi":"10.3390/ijgi13080279","DOIUrl":null,"url":null,"abstract":"Rapid urbanization leads to fragmentation and reduced connectivity of urban landscapes, endangering regional biodiversity conservation and sustainable development. Constructing a red, green, and blue spatial ecological network is an effective way to alleviate ecological pressure and promote economic development. Using circuit theory, hydrological analysis, and suitability analysis, this study constructs a composite ecological network under urban–rural integration. The results show the following: (1) A total of 22 ecological corridors with a length of 349.20 km, 22 ecological pinch points, and 22 ecological barrier points are identified in the municipal area, mainly distributed in Haidong Town. There are 504 stormwater corridors, which are more evenly distributed, 502 riverfront landscape corridors, and 130 slow-moving landscape corridors. (2) A total of 20 ecological corridors, with a length of 99.23 km, 19 ecological pinch points, and 25 barrier points were identified in the main urban area, and most of them are located in the ecological corridors. There are 71 stormwater corridors, mainly located in the northwestern forest area, 71 riverfront recreation corridors, and 50 slow-moving recreation corridors. (3) Two scales of superimposed ecological source area of 3.65 km2, and eleven ecological corridors, are primarily distributed between Erhai Lake and Xiaguan Town. There are two superimposed stormwater corridors and fourteen recreational corridors. The eco-nodes are mostly distributed in the east and south of Dali City; wetland nodes are mainly situated in the eighteen streams of Cangshan Mountain; and landscape nodes are more balanced in spatial distribution. The study results can provide a reference for composite ecological network construction.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"193 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecological Network Construction Based on Red, Green and Blue Space: A Case Study of Dali City, China\",\"authors\":\"Rong Chen, Shunmin Zhang, Xiaoyuan Huang, Xiang Li, Jiansong Peng\",\"doi\":\"10.3390/ijgi13080279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid urbanization leads to fragmentation and reduced connectivity of urban landscapes, endangering regional biodiversity conservation and sustainable development. Constructing a red, green, and blue spatial ecological network is an effective way to alleviate ecological pressure and promote economic development. Using circuit theory, hydrological analysis, and suitability analysis, this study constructs a composite ecological network under urban–rural integration. The results show the following: (1) A total of 22 ecological corridors with a length of 349.20 km, 22 ecological pinch points, and 22 ecological barrier points are identified in the municipal area, mainly distributed in Haidong Town. There are 504 stormwater corridors, which are more evenly distributed, 502 riverfront landscape corridors, and 130 slow-moving landscape corridors. (2) A total of 20 ecological corridors, with a length of 99.23 km, 19 ecological pinch points, and 25 barrier points were identified in the main urban area, and most of them are located in the ecological corridors. There are 71 stormwater corridors, mainly located in the northwestern forest area, 71 riverfront recreation corridors, and 50 slow-moving recreation corridors. (3) Two scales of superimposed ecological source area of 3.65 km2, and eleven ecological corridors, are primarily distributed between Erhai Lake and Xiaguan Town. There are two superimposed stormwater corridors and fourteen recreational corridors. The eco-nodes are mostly distributed in the east and south of Dali City; wetland nodes are mainly situated in the eighteen streams of Cangshan Mountain; and landscape nodes are more balanced in spatial distribution. The study results can provide a reference for composite ecological network construction.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13080279\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080279","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Ecological Network Construction Based on Red, Green and Blue Space: A Case Study of Dali City, China
Rapid urbanization leads to fragmentation and reduced connectivity of urban landscapes, endangering regional biodiversity conservation and sustainable development. Constructing a red, green, and blue spatial ecological network is an effective way to alleviate ecological pressure and promote economic development. Using circuit theory, hydrological analysis, and suitability analysis, this study constructs a composite ecological network under urban–rural integration. The results show the following: (1) A total of 22 ecological corridors with a length of 349.20 km, 22 ecological pinch points, and 22 ecological barrier points are identified in the municipal area, mainly distributed in Haidong Town. There are 504 stormwater corridors, which are more evenly distributed, 502 riverfront landscape corridors, and 130 slow-moving landscape corridors. (2) A total of 20 ecological corridors, with a length of 99.23 km, 19 ecological pinch points, and 25 barrier points were identified in the main urban area, and most of them are located in the ecological corridors. There are 71 stormwater corridors, mainly located in the northwestern forest area, 71 riverfront recreation corridors, and 50 slow-moving recreation corridors. (3) Two scales of superimposed ecological source area of 3.65 km2, and eleven ecological corridors, are primarily distributed between Erhai Lake and Xiaguan Town. There are two superimposed stormwater corridors and fourteen recreational corridors. The eco-nodes are mostly distributed in the east and south of Dali City; wetland nodes are mainly situated in the eighteen streams of Cangshan Mountain; and landscape nodes are more balanced in spatial distribution. The study results can provide a reference for composite ecological network construction.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.