{"title":"不可信任云环境中加密地理信息的高效可验证范围查询方案","authors":"Zhuolin Mei, Jing Zeng, Caicai Zhang, Shimao Yao, Shunli Zhang, Haibin Wang, Hongbo Li, Jiaoli Shi","doi":"10.3390/ijgi13080281","DOIUrl":null,"url":null,"abstract":"With the rapid development of geo-positioning technologies, location-based services have become increasingly widespread. In the field of location-based services, range queries on geographical data have emerged as an important research topic, attracting significant attention from academia and industry. In many applications, data owners choose to outsource their geographical data and range query tasks to cloud servers to alleviate the burden of local data storage and computation. However, this outsourcing presents many security challenges. These challenges include adversaries analyzing outsourced geographical data and query requests to obtain privacy information, untrusted cloud servers selectively querying a portion of the outsourced data to conserve computational resources, returning incorrect search results to data users, and even illegally modifying the outsourced geographical data, etc. To address these security concerns and provide reliable services to data owners and data users, this paper proposes an efficient and verifiable range query scheme (EVRQ) for encrypted geographical information in untrusted cloud environments. EVRQ is constructed based on a map region tree, 0–1encoding, hash function, Bloom filter, and cryptographic multiset accumulator. Extensive experimental evaluations demonstrate the efficiency of EVRQ, and a comprehensive analysis confirms the security of EVRQ.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"22 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Verifiable Range Query Scheme for Encrypted Geographical Information in Untrusted Cloud Environments\",\"authors\":\"Zhuolin Mei, Jing Zeng, Caicai Zhang, Shimao Yao, Shunli Zhang, Haibin Wang, Hongbo Li, Jiaoli Shi\",\"doi\":\"10.3390/ijgi13080281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of geo-positioning technologies, location-based services have become increasingly widespread. In the field of location-based services, range queries on geographical data have emerged as an important research topic, attracting significant attention from academia and industry. In many applications, data owners choose to outsource their geographical data and range query tasks to cloud servers to alleviate the burden of local data storage and computation. However, this outsourcing presents many security challenges. These challenges include adversaries analyzing outsourced geographical data and query requests to obtain privacy information, untrusted cloud servers selectively querying a portion of the outsourced data to conserve computational resources, returning incorrect search results to data users, and even illegally modifying the outsourced geographical data, etc. To address these security concerns and provide reliable services to data owners and data users, this paper proposes an efficient and verifiable range query scheme (EVRQ) for encrypted geographical information in untrusted cloud environments. EVRQ is constructed based on a map region tree, 0–1encoding, hash function, Bloom filter, and cryptographic multiset accumulator. Extensive experimental evaluations demonstrate the efficiency of EVRQ, and a comprehensive analysis confirms the security of EVRQ.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13080281\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13080281","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Efficient and Verifiable Range Query Scheme for Encrypted Geographical Information in Untrusted Cloud Environments
With the rapid development of geo-positioning technologies, location-based services have become increasingly widespread. In the field of location-based services, range queries on geographical data have emerged as an important research topic, attracting significant attention from academia and industry. In many applications, data owners choose to outsource their geographical data and range query tasks to cloud servers to alleviate the burden of local data storage and computation. However, this outsourcing presents many security challenges. These challenges include adversaries analyzing outsourced geographical data and query requests to obtain privacy information, untrusted cloud servers selectively querying a portion of the outsourced data to conserve computational resources, returning incorrect search results to data users, and even illegally modifying the outsourced geographical data, etc. To address these security concerns and provide reliable services to data owners and data users, this paper proposes an efficient and verifiable range query scheme (EVRQ) for encrypted geographical information in untrusted cloud environments. EVRQ is constructed based on a map region tree, 0–1encoding, hash function, Bloom filter, and cryptographic multiset accumulator. Extensive experimental evaluations demonstrate the efficiency of EVRQ, and a comprehensive analysis confirms the security of EVRQ.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.