揭开空间相关性的神秘面纱:解读局部空间自相关性的互动可视化方法

Lee Mason, Blanaid Hicks, Jonas Almeida
{"title":"揭开空间相关性的神秘面纱:解读局部空间自相关性的互动可视化方法","authors":"Lee Mason, Blanaid Hicks, Jonas Almeida","doi":"arxiv-2408.02418","DOIUrl":null,"url":null,"abstract":"The Local Moran's I statistic is a valuable tool for identifying localized\npatterns of spatial autocorrelation. Understanding these patterns is crucial in\nspatial analysis, but interpreting the statistic can be difficult. To simplify\nthis process, we introduce three novel visualizations that enhance the\ninterpretation of Local Moran's I results. These visualizations can be\ninteractively linked to one another, and to established visualizations, to\noffer a more holistic exploration of the results. We provide a JavaScript\nlibrary with implementations of these new visual elements, along with a web\ndashboard that demonstrates their integrated use.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demystifying Spatial Dependence: Interactive Visualizations for Interpreting Local Spatial Autocorrelation\",\"authors\":\"Lee Mason, Blanaid Hicks, Jonas Almeida\",\"doi\":\"arxiv-2408.02418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Local Moran's I statistic is a valuable tool for identifying localized\\npatterns of spatial autocorrelation. Understanding these patterns is crucial in\\nspatial analysis, but interpreting the statistic can be difficult. To simplify\\nthis process, we introduce three novel visualizations that enhance the\\ninterpretation of Local Moran's I results. These visualizations can be\\ninteractively linked to one another, and to established visualizations, to\\noffer a more holistic exploration of the results. We provide a JavaScript\\nlibrary with implementations of these new visual elements, along with a web\\ndashboard that demonstrates their integrated use.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

局部莫兰 I 统计量是识别局部空间自相关模式的重要工具。理解这些模式对空间分析至关重要,但解释统计量却很困难。为了简化这一过程,我们引入了三种新颖的可视化方法,以加强对局部莫兰 I 结果的解释。这些可视化效果可以相互交互链接,也可以与已有的可视化效果链接,从而对结果进行更全面的探索。我们提供了一个 JavaScript 库,其中包含这些新的可视化元素的实现方法,同时还提供了一个网络仪表板来演示它们的集成使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demystifying Spatial Dependence: Interactive Visualizations for Interpreting Local Spatial Autocorrelation
The Local Moran's I statistic is a valuable tool for identifying localized patterns of spatial autocorrelation. Understanding these patterns is crucial in spatial analysis, but interpreting the statistic can be difficult. To simplify this process, we introduce three novel visualizations that enhance the interpretation of Local Moran's I results. These visualizations can be interactively linked to one another, and to established visualizations, to offer a more holistic exploration of the results. We provide a JavaScript library with implementations of these new visual elements, along with a web dashboard that demonstrates their integrated use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信