耗散分数标准映射:黎曼-刘维尔与卡普托

J. A. Mendez-Bermudez, R. Aguilar-Sanchez
{"title":"耗散分数标准映射:黎曼-刘维尔与卡普托","authors":"J. A. Mendez-Bermudez, R. Aguilar-Sanchez","doi":"arxiv-2408.04861","DOIUrl":null,"url":null,"abstract":"In this study, given the inherent nature of dissipation in realistic\ndynamical systems, we explore the effects of dissipation within the context of\nfractional dynamics. Specifically, we consider the dissipative versions of two\nwell known fractional maps: the Riemann-Liouville (RL) and the Caputo (C)\nfractional standard maps (fSMs). Both fSMs are two-dimensional nonlinear maps\nwith memory given in action-angle variables $(I_n,\\theta_n)$; $n$ being the\ndiscrete iteration time of the maps. In the dissipative versions these fSMs are\nparameterized by the strength of nonlinearity $K$, the fractional order of the\nderivative $\\alpha\\in(1,2]$, and the dissipation strength $\\gamma\\in(0,1]$. In\nthis work we focus on the average action $\\left< I_n \\right>$ and the average\nsquared action $\\left< I_n^2 \\right>$ when~$K\\gg1$, i.e. along strongly chaotic\norbits. We first demonstrate, for $|I_0|>K$, that dissipation produces the\nexponential decay of the average action $\\left< I_n \\right> \\approx\nI_0\\exp(-\\gamma n)$ in both dissipative fSMs. Then, we show that while $\\left<\nI_n^2 \\right>_{RL-fSM}$ barely depends on $\\alpha$ (effects are visible only\nwhen $\\alpha\\to 1$), any $\\alpha< 2$ strongly influences the behavior of\n$\\left< I_n^2 \\right>_{C-fSM}$. We also derive an analytical expression able to\ndescribe $\\left< I_n^2 \\right>_{RL-fSM}(K,\\alpha,\\gamma)$.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative fractional standard maps: Riemann-Liouville and Caputo\",\"authors\":\"J. A. Mendez-Bermudez, R. Aguilar-Sanchez\",\"doi\":\"arxiv-2408.04861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, given the inherent nature of dissipation in realistic\\ndynamical systems, we explore the effects of dissipation within the context of\\nfractional dynamics. Specifically, we consider the dissipative versions of two\\nwell known fractional maps: the Riemann-Liouville (RL) and the Caputo (C)\\nfractional standard maps (fSMs). Both fSMs are two-dimensional nonlinear maps\\nwith memory given in action-angle variables $(I_n,\\\\theta_n)$; $n$ being the\\ndiscrete iteration time of the maps. In the dissipative versions these fSMs are\\nparameterized by the strength of nonlinearity $K$, the fractional order of the\\nderivative $\\\\alpha\\\\in(1,2]$, and the dissipation strength $\\\\gamma\\\\in(0,1]$. In\\nthis work we focus on the average action $\\\\left< I_n \\\\right>$ and the average\\nsquared action $\\\\left< I_n^2 \\\\right>$ when~$K\\\\gg1$, i.e. along strongly chaotic\\norbits. We first demonstrate, for $|I_0|>K$, that dissipation produces the\\nexponential decay of the average action $\\\\left< I_n \\\\right> \\\\approx\\nI_0\\\\exp(-\\\\gamma n)$ in both dissipative fSMs. Then, we show that while $\\\\left<\\nI_n^2 \\\\right>_{RL-fSM}$ barely depends on $\\\\alpha$ (effects are visible only\\nwhen $\\\\alpha\\\\to 1$), any $\\\\alpha< 2$ strongly influences the behavior of\\n$\\\\left< I_n^2 \\\\right>_{C-fSM}$. We also derive an analytical expression able to\\ndescribe $\\\\left< I_n^2 \\\\right>_{RL-fSM}(K,\\\\alpha,\\\\gamma)$.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,鉴于耗散在现实动力学系统中的固有性质,我们探讨了耗散在分数动力学背景下的影响。具体来说,我们考虑了两个众所周知的分数映射的耗散版本:黎曼-刘维尔(RL)和卡普托(C)分数标准映射(fSMs)。这两个分数标准映射都是二维非线性映射,其记忆以作用角变量$(I_n,\theta_n)$给出;$n$是映射的离散迭代时间。在耗散版本中,这些 fSM 的参数包括非线性强度 $K$、分阶分量系数 $alpha/in(1,2]$,以及耗散强度 $\gamma/in(0,1]$。在这项工作中,我们重点研究当~$K\gg1$,即沿着强混沌轨道时的平均作用$left< I_n \right>$和平均平方作用$left< I_n^2 \right>$。我们首先证明,对于$|I_0|>K$,耗散会在这两个耗散fSM中产生平均作用$\left< I_n \right> \approxI_0\exp(-\gamma n)$的指数衰减。然后,我们证明,虽然 $left_{RL-fSM}$几乎不依赖于 $\alpha$(只有当 $\alpha\to 1$ 时效果才明显),但任何 $\alpha< 2$ 都会强烈影响 $left< I_n^2 \right>_{C-fSM}$的行为。我们还推导出一个分析表达式,能够描述 $left< I_n^2 \right>_{RL-fSM}(K,\alpha,\gamma)$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dissipative fractional standard maps: Riemann-Liouville and Caputo
In this study, given the inherent nature of dissipation in realistic dynamical systems, we explore the effects of dissipation within the context of fractional dynamics. Specifically, we consider the dissipative versions of two well known fractional maps: the Riemann-Liouville (RL) and the Caputo (C) fractional standard maps (fSMs). Both fSMs are two-dimensional nonlinear maps with memory given in action-angle variables $(I_n,\theta_n)$; $n$ being the discrete iteration time of the maps. In the dissipative versions these fSMs are parameterized by the strength of nonlinearity $K$, the fractional order of the derivative $\alpha\in(1,2]$, and the dissipation strength $\gamma\in(0,1]$. In this work we focus on the average action $\left< I_n \right>$ and the average squared action $\left< I_n^2 \right>$ when~$K\gg1$, i.e. along strongly chaotic orbits. We first demonstrate, for $|I_0|>K$, that dissipation produces the exponential decay of the average action $\left< I_n \right> \approx I_0\exp(-\gamma n)$ in both dissipative fSMs. Then, we show that while $\left< I_n^2 \right>_{RL-fSM}$ barely depends on $\alpha$ (effects are visible only when $\alpha\to 1$), any $\alpha< 2$ strongly influences the behavior of $\left< I_n^2 \right>_{C-fSM}$. We also derive an analytical expression able to describe $\left< I_n^2 \right>_{RL-fSM}(K,\alpha,\gamma)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信